
Fade2D
v1.86

Generated by Doxygen 1.8.17

i

1 Main Page 1

1.1 C++ Constrained Delaunay Triangulation Fade2D . 1

1.1.1 Getting started with the C++ Delaunay triangulation: . 2

1.1.2 Compiling for Windows users: . 2

1.1.3 Compiling under Linux and Mac: . 2

1.1.4 Directory Contents . 3

1.1.5 Troubleshooting . 3

1.1.6 Release notes / History . 3

2 Module Index 11

2.1 Modules . 11

3 Class Index 12

3.1 Class List . 12

4 File Index 13

4.1 File List . 13

5 Module Documentation 14

5.1 Tools . 14

5.1.1 Detailed Description . 14

5.1.2 Function Documentation . 14

5.2 Version Information . 18

5.2.1 Detailed Description . 18

5.3 File I/O . 19

5.3.1 Detailed Description . 19

5.3.2 Function Documentation . 19

5.4 Test Data Generators . 22

5.4.1 Detailed Description . 22

5.4.2 Generate random polygons and other test objects . 22

5.4.3 Function Documentation . 22

6 Class Documentation 28

6.1 GEOM_FADE2D::Bbox2 Class Reference . 28

6.1.1 Detailed Description . 29

6.1.2 Constructor & Destructor Documentation . 29

6.1.3 Member Function Documentation . 29

6.2 GEOM_FADE2D::Circle2 Class Reference . 33

6.2.1 Detailed Description . 33

6.2.2 Constructor & Destructor Documentation . 33

6.2.3 Member Function Documentation . 34

6.3 GEOM_FADE2D::Color Class Reference . 34

6.3.1 Detailed Description . 35

6.3.2 Constructor & Destructor Documentation . 35

Generated by Doxygen

ii

6.4 GEOM_FADE2D::ConstraintGraph2 Class Reference . 36

6.4.1 Detailed Description . 37

6.4.2 Member Function Documentation . 37

6.5 GEOM_FADE2D::ConstraintSegment2 Class Reference . 39

6.5.1 Detailed Description . 40

6.5.2 Member Function Documentation . 40

6.6 GEOM_FADE2D::Edge2 Class Reference . 41

6.6.1 Constructor & Destructor Documentation . 42

6.6.2 Member Function Documentation . 42

6.7 GEOM_FADE2D::Fade_2D Class Reference . 44

6.7.1 Detailed Description . 46

6.7.2 Constructor & Destructor Documentation . 46

6.7.3 Member Function Documentation . 48

6.8 GEOM_FADE2D::FadeExport Struct Reference . 63

6.8.1 Detailed Description . 64

6.8.2 Member Function Documentation . 64

6.9 GEOM_FADE2D::Func_gtEdge2D Struct Reference . 64

6.10 GEOM_FADE2D::Func_ltEdge2D Struct Reference . 64

6.11 GEOM_FADE2D::Label Class Reference . 65

6.11.1 Detailed Description . 65

6.11.2 Constructor & Destructor Documentation . 65

6.12 GEOM_FADE2D::MeshGenParams Class Reference . 65

6.12.1 Detailed Description . 66

6.12.2 Member Function Documentation . 66

6.12.3 Member Data Documentation . 68

6.13 GEOM_FADE2D::MsgBase Class Reference . 70

6.13.1 Detailed Description . 70

6.13.2 Member Function Documentation . 70

6.14 GEOM_FADE2D::Point2 Class Reference . 70

6.14.1 Detailed Description . 72

6.14.2 Constructor & Destructor Documentation . 72

6.14.3 Member Function Documentation . 72

6.15 GEOM_FADE2D::Segment2 Class Reference . 75

6.15.1 Detailed Description . 75

6.15.2 Constructor & Destructor Documentation . 75

6.15.3 Member Function Documentation . 76

6.16 GEOM_FADE2D::SegmentChecker Class Reference . 76

6.16.1 Detailed Description . 77

6.16.2 Constructor & Destructor Documentation . 77

6.16.3 Member Function Documentation . 78

6.17 GEOM_FADE2D::Triangle2 Class Reference . 83

6.17.1 Detailed Description . 84

Generated by Doxygen

1 Main Page 1

6.17.2 Constructor & Destructor Documentation . 84

6.17.3 Member Function Documentation . 85

6.18 GEOM_FADE2D::TriangleAroundVertexIterator Class Reference 88

6.18.1 Detailed Description . 89

6.18.2 Constructor & Destructor Documentation . 89

6.18.3 Member Function Documentation . 90

6.19 GEOM_FADE2D::UserPredicateT Class Reference . 91

6.19.1 Detailed Description . 91

6.20 GEOM_FADE2D::Vector2 Class Reference . 92

6.20.1 Detailed Description . 92

6.20.2 Constructor & Destructor Documentation . 92

6.20.3 Member Function Documentation . 93

6.21 GEOM_FADE2D::Visualizer2 Class Reference . 93

6.21.1 Detailed Description . 94

6.21.2 Constructor & Destructor Documentation . 94

6.21.3 Member Function Documentation . 95

6.22 GEOM_FADE2D::Zone2 Class Reference . 95

6.22.1 Detailed Description . 96

6.22.2 Member Function Documentation . 96

6.22.3 Friends And Related Function Documentation . 100

7 File Documentation 101

7.1 Bbox2.h File Reference . 101

7.2 Color.h File Reference . 101

7.3 ConstraintSegment2.h File Reference . 102

7.3.1 Enumeration Type Documentation . 102

7.4 SegmentChecker.h File Reference . 103

7.4.1 Enumeration Type Documentation . 103

7.5 TriangleAroundVertexIterator.h File Reference . 103

Index 105

1 Main Page

1.1 C++ Constrained Delaunay Triangulation Fade2D

• Fast C++ Delaunay triangulation library , see the benchmark.

• C++ examples for 2D Delaunay triangulations and 2.5D triangulations.

• Free Student license. Commercial licenses and support are available.

• Support for Windows (Visual Studio), MacOS (Clang), Linux (GCC) on PC and Raspberry PI

Generated by Doxygen

https://www.geom.at/example-1-benchmark/
https://www.geom.at/category/fade2d-examples/
https://www.geom.at/category/fade25d-examples/

2

1.1.1 Getting started with the C++ Delaunay triangulation:

Download. Unzip. Start to play with the included example source codes: The first example is
described here.

Fade comes as two separate libraries:

• Fade2D is a Delaunay triangulation library for 2D with

– Polygon support

– Constraint edges

– Grid Mesher and Delaunay Mesh Generator

– Segment Intersection Test Software

• Fade2.5D can do anything that Fade2D can do. But it has an additional z-coordinate and a rich selection
of additional algorithms made for Digital Elevation Models (DEM) and surfaces like

– Cut-and-Fill

– Cookie Cutter

– Valley-/Ridge-triangulations

– Mesh smoothing

– Point cloud simplification.

A collection of 2D and 2.5D example source codes (∗.cpp files) is contained in the download. The C++-examples
go step by step over the concepts of the library. New Fade2.5D users are advised to check also the 2D examples
because the basics are described there and these apply also to 2.5D.

1.1.2 Compiling for Windows users:

1. Open one of the Visual Studio example projects (currently supported: VS2010, VS2012, VS2013, VS2015,
VS2017, VS2019)

2. Compile the example source code. The executable is written to the Win32 or x64 folder.

When you link the triangulation library with your own software you can use the settings from the example solutions
or use the table below:

Visual Studio IDE Platform Toolset
VS2010 v10 toolset v100 or Windows7.1SDK
VS2012 v11 toolset v110
VS2013 v12 toolset v120
VS2015 v14 toolset v140
VS2017 v15 toolset v141
VS2019 v16 toolset v142

1.1.3 Compiling under Linux and Mac:

1. Edit the Makefile (choose Apple, your Linux distro or Raspberry PI) and type make to compile the example
source code.

Generated by Doxygen

https://www.geom.at/fade-delaunay-triangulation/
https://www.geom.at/fade-delaunay-triangulation/

1.1 C++ Constrained Delaunay Triangulation Fade2D 3

2. Make sure GMP is installed:
$ sudo apt-get install libgmp10 (works on Ubuntu/Debian/Mint/Raspbian, on other systems search for libgmp
or gmp)

Work through the provided examples. They are small, well documented and they visualize the results.

1.1.4 Directory Contents

• include_fade2d and include_fade25d
Header files of the two libraries.

• Win32 and x64
This directory contains the DLL's for Windows 32-bit and 64-bit and it is the target directory for the executables
of example code compiled with Visual Studio.

• lib_${DISTRO}_${ARCHITECTURE}
The shared libs (∗.so) for Linux/Apple developers.

• examples_2D
2D Example source code (∗.cpp files) and Visual Studio projects

• examples_25D
2.5D Example source code (∗.cpp files) and Visual Studio projects

• doc
PDF Documentation

1.1.5 Troubleshooting

• Check if the examples work on your computer. Then compare their settings with your project settings.

• When updating from an earlier version: UPDATE ALSO THE HEADER FILES.

• Mixing multiple Visual Studio versions won't work. Use the right dll.

• In rare cases you might need to increase Properties->ConfigurationProperties->Linker->System->Stack←↩

ReserveSize in your Visual Studio project settings.

• If your problem persists, don't hesitate to send a minimal example that reproduces it and it will be fixed asap.

1.1.6 Release notes / History

Version 1.86, April 28th., 2021:

• New commands Fade_2D::saveTriangulation(), Fade_2D::saveZones(), Zone2::save() and Fade_2D::load()
to save and load triangulation data. The new example ex11_save_and_load.cpp demonstrates it.

• New dry-mode parameter for CloudPrepare::uniformSimplifyGrid() and for CloudPrepare::adaptiveSimplify()
so that the size of the point cloud that would result from the reduction can be determined.

Version 1.85, March 8th., 2021:

• Bugfixes: A multithreading-bug has been solved and strings are now correctly passed to the Visualizer2 class.

Generated by Doxygen

https://www.geom.at/contact

4

• New method Fade_2D::setFastMode(true) to avoid expensive computations. This accelerates triangulation
of raster data i.e., points on a regular grid.

v1.84, Jan. 7th., 2021:

• IMPORTANT IF YOU UPGRADE FROM A PREVIOUS VERSION: To avoid passing std::strings over the
DLL boundary, some function parameters have been changed from std::string to const char∗. You will often
not even notice this, but if your code should not compile anymore, then this is the reason. Instead of pass-
ing "yourString" please pass it as "yourString.c_str()". This change was unavoidable. Thank you for your
understanding!

• New CloudPrepare class to simplify point clouds and also to avoid memory-usage-peaks. Have a look at the
examples!

• New function Fade_2D::exportTriangulation() allows conventient transfer of triangulation data to your own
data structures. The function was created with memory consumption in mind, i.e. while the data is exported,
it frees memory from the library gradually.

• New function Zone2::smoothing() applies weighted Laplacian smoothing to the vertices of a zone.

• New Valley/Ridge optimization: With Zone2::slopeValleyRidgeOptimization() one can choose between 3
algorithms now to adapt the triangulation better to valleys and ridges. Have a look at the new examples.

• Example codes completely rewritten.

• Small bug fixes.

v1.83, Dec. 30th, 2020:

• Internal test release. Significant changes, thus it has not been released.

v1.82, Nov. 15th, 2020:

• Intermediate release to support CentOS/RedHat7.8. Minor improvements here and there.

v1.81, May 17th, 2020:

• Memory Leak in EfficientModel fixed. EfficientModel improved: Pruning the point cloud is much faster now
and the new method zSmoothing() has been implemented. It provides minimum-, maximum-, median- and
average-smoothing.

v1.80, March 25th, 2020:

• Bug in Cut&Fill solved: A foot point was computed in 3D while it should have been computed in 2D. The
difference was in most cases insignificant and thus the problem did not become apparent earlier. Sorry.
Fixed.

• Improvement in Cut&Fill: The algorithm checks now if the two input zones do overlap. If not, the CutAndFill←↩

::go() method returns false and the CutAndFill object shall not further be used.

• Example source codes adapted and -std=c++98 removed from their Makefiles

• Documentation improved

v1.79, January 20th, 2020: Internal version. Revision.
v1.78, November 15th, 2019:

• Bugfix: Multithreading did not work in Windows due to a CMake configuration error.

• A typo in the function name Fade_2D::measureTriangulationTime() has been corrected.

v1.77, October 21st, 2019

Generated by Doxygen

1.1 C++ Constrained Delaunay Triangulation Fade2D 5

• Support for Visual Studio 2019.

• A bug has been fixed: In a rare case a self-intersecting constraint graph could generate an error.

• Improvements: The constraint-insertion-strategies CIS_CONFORMING_DELAUNAY and CIS_CONFORM←↩

ING_DELAUNAY_SEGMENT_LEVEL are deprecated now.

• The fast and reliable replacement is CIS_CONSTRAINED_DELAUNAY along with the new methods
ConstraintGraph::makeDelaunay() and Fade_2D::drape(). See the new example code in examples_←↩

25D/terrain.cpp.

v1.75 and 1.76

• Non-public tests.

v1.74, March 19th, 2019:

• Cleanup: The (until now experimental) surface reconstruction module has been moved into the separate WOF
Point Cloud Meshing library (https://www.geom.at/products/wof-point-cloud-mesher/).
This makes the binaries smaller and it improves the maintainability of the code.

• Cleanup: Support for VS2008 has been dropped (if you are a commercial user and still need VS2008 then
contact the author please!).

• The build system has been migrated to CMake to reduce the manual work and to guarantee uniform flags for
all builds.

• The HoleFiller class that has been developed for the removed surface reconstruction module is retained in
the library because it has already users. Its code has been revised in order to provide repeatable results for
identical inputs.

• According to a user request the MeshGenParams class (used for advanced Delaunay Meshing) offers now a
method to lock certain constraint segments such that they are not splitted while all others can be splitted if
required.

v1.73, January 14th, 2019:

• While all below mentioned releases after v1.63 were development versions the present v1.73 is again an
official release
for all.

• The work of the below betas is included

• as well as a bugfix in the getProfile() method of the IsoContours class (this method was new and experimental
in v1.63)

v1.71 and 1.72, October 24th, 2018:

• (internal) Hole-Filling (Polygon-Triangulation) improved.

v1.70, October 17th, 2018:

• (internal) Hole-Filling (Polygon-Triangulation) improved.

v1.69, October 15th, 2018:

• (internal) Hole-Filling (Polygon-Triangulation) improved.

v1.68, September 14th, 2018:

• (internal) Hole-Filling (Polygon-Triangulation) improved.

Generated by Doxygen

https://www.geom.at/products/wof-point-cloud-mesher/

6

v1.67, September 4th, 2018:

• (internal) Hole-Filling (Polygon-Triangulation) is now offered via. an API call. Intermediate beta release.

v1.66, August 25th, 2018:

• (internal) Bugfix in Cut&Fill: An intersection point could be slightly off its expected range. Solved. Unofficial
intermediate code.

v1.65, July 29th, 2018:

• (internal) Another bugfix in Cut&Fill. Unofficial intermediate binary.

v1.64, July 21st, 2018:

• (internal) Bugfix in the Cut&Fill module: In rare cases Cut&Fill crashed due to unexpected numeric deviation
(fixed).

• The importTriangles() function has been reimplemented and is considerably faster now.

• And there is a change that affects only 32-bit users: Binary files written with the writePointsBIN() and
writeSegmentsBIN() functions on 32-bit machines were not readable on 64-bit machines. The format on
32-bit machines (read/write) has been adapted to match exactly the one of 64-bit machines. But note that old
32-bit files are not readable anymore. This should affect next to nobody, thus this solution has been chosen.

v1.63, June 10th, 2018:

• Cookie-Cutter operation added. 3D Point Cloud Reconstruction added to the API (but is still under develop-
ment, pls. take it as a preview).

• Raspberry PI support added again.

v1.62, June 3rd, 2018:

• 3D Point Cloud Reconstruction considerably improved. Unofficial demo.

v1.61, May 1st, 2018:

• 3D Point Cloud Reconstruction: Unofficial demo.

v1.60, February 26th, 2018:

• Accurate computation of glancing segment intersections.

• Additional parameter for Advanced Meshing: bool bKeepExistingSteinerPoints=true in MeshGenParams
makes all Steiner points from previous refinement calls static, i.e. unremovable during subsequent refine-
ment calls. This way Advanced Meshing can be carried out for several zones of a triangulation such that it
does not destroy what has been meshed so far.

v1.59, January 14th, 2018:

• Performance upgrade: Multithreading is available now. Large point sets reach a speedup of 4.4 on a hexacore
CPU (i7 6800K)

v1.58, October 23th, 2017:

• Mesh Generator refactored. Delaunay Meshing is +10x faster now.

• A function to create polygons from boundary edges has been added.

v1.57, October 9th, 2017:

• Nonpublic test code.

v1.56, September 24th, 2017:

• Bugfix: createConstraint() crashed in a rare case. Solved.

Generated by Doxygen

1.1 C++ Constrained Delaunay Triangulation Fade2D 7

• Functions for binary file I/O added.

v1.55, August 12th, 2017:

• Access to internal Cut&Fill datastructures revised.

• Example source codes revised. Support for Visual Studio 2017 added.

v1.54beta, August 8th, 2017:

• Access to internal Cut&Fill datastructures. . This is a pre-released beta, code quality is good but final tests
and documentation updates required.

v1.53, July 15th, 2017:

• Error corrections and performance upgrades in the still quite new Cut&Fill library module.

v1.53 beta, June 2nd, 2017:

• The new Cut&Fill library module has been added. Cut&Fill computes the volume between two surfaces.

v1.51 beta, May 27th, 2017:

• Non-public test binary

v1.50, April 5th, 2017: After three internal betas (that concetrated on refactoring and rare bugs) this is again a stable
public release:

• The constraint insertion subsystem has been rewrittten and is faster now.

• Visualization improved.

• Exact orientation tests provided through the API.

• Improved progress bar support. Mesh generator improved.

• Users who upgrade from earlier Fade releases: The Zone2::getArea() and Triangle2::getArea() methods have
been replaced by getArea2D() in Fade2D and by getArea2D() AND getArea25D() in Fade2.5D. The reason
is that the old getArea() method was easily misunderstood in Fade2.5D (it returned the same result as get←↩

Area25D() now). We have decided to remove the old method to avoid confusion and a potential source of
error. If necessary, please adapt your code.

v1.49, March 2nd, 2017:

• Constraint insertion subsystem improved.

• Mesh generator revised.

v1.48, February 15th, 2017:

• Corrections of yesterday's v1.47.

v1.47, February 14th, 2017: The focus of this (for now) non-public version is stability:

• Intersecting constraint segments must be subdivided although their exact intersection is not always repre-
sentable with double precision coordinates. Thus tiny rounding errors are unavoidable and these caused
trouble in very unlikely cases.

• The constraint insertion subsystem has now been re-implemented to behave robust also in such cases.

v1.46a, January 14th, 2017:

• +++ Raspberry PI is supported now +++ // Apart from RPI support v1.46a is equal to v1.46. Raspberry PI
users: Please give feedback, do you have everything you need for RPI development now?

v1.46, January 8th, 2017:

• +++ MacOS is supported now +++ //

Generated by Doxygen

8

• A new class EfficientModel takes oversampled 2.5D point clouds and returns a subset that represents the
model efficiently. The automatic pruning process runs in a controlled fashion such that a user specified
maximum error is kept.

• The Delaunay Mesh Generator is now supported by a Grid Mesher, thus it creates more regular meshes.

• The Delaunay triangulation of specific point sets is not unique, for example when grid points are triangulated
(4 points on a common circumcircle). To improve the repeatability and for reasons of visual appearance the
new method Zone2::unifyGrid() has been implemented.

• A problem in the point location method Fade_2D::locate() when the query point was exactly on the convex
hull of the triangulation has been solved.

v1.43, November 20th, 2016:

• Better example source code for the new SegmentChecker class.

• And the SegmentChecker of v1.42 returned false positives, this problem is solved now.

v1.42, October 19th, 2016:

• The new tool SegmentChecker takes a bunch of segments and fully automatically identifies intersecting seg-
ments. The underlying data structure makes the tool incredibly fast. Intersecting segments can be visualized.
Intersections can be computed in 2D and 2.5D (with heights).

• A new module named TestDataGenerators creates random polygons, random segments, points, random
numbers and polylines for automated software stress tests. Progress bar support added.

v1.41, July 24th, 2016:

• New constraint insertion strategy.

• Minor bug fixes.

• Performance slightly improved.

v1.40 beta, June 14th, 2016:

• Non public intermediate test code.

• Bounded zones introduced: Mesh generation algorithms require that zones are bounded by constraint seg-
ments. This is certainly the case for the most usual zones with zoneLocation=ZL_INSIDE. But other types
of zones may be unbounded and in this case remeshing won't work well, so it was necessary to change
the behavior: From now on calling refine() and refineAdvanced() is only allowed with zones whose zone←↩

Location is ZL_INSIDE or ZL_BOUNDED. A bounded zone can easily be gained from any other zone using
Zone2::convertToBoundedZone(). Also new: Fade_2D::createConstraintGraph(..) has now a third parameter
'bool bOrientedSegments=false'. By default it is false to provide backwards compatibility. This parameter
allows you to specify that the provided segments are CCW oriented. This way more complex inside- and
outside-zones can be formed.

• Performance of Fade_2D::createConstraint(..) drastically improved.

v1.39, May 31st, 2016:

• Non public intermediate beta.

v1.37a, March 15th, 2016:

• Small upgrade: The performance of the remove method has been improved.

v1.37, March 10th, 2016:

• Interface change in the MeshGenParams class. The class has been introduced two weeks before, so chances
are good that the change does not affect you. Previously the class had the methods getMaxTriangle←↩

Area(double x,double y) and getMaxEdgeLength(double x,double y) where x and y where the barycenter of
a triangle for which the algorithm determines if it must be refined. The change is that x and y have been
replaced by the triangle itself to give client code even more control (x and y can still be computed from the
triangle).

Generated by Doxygen

1.1 C++ Constrained Delaunay Triangulation Fade2D 9

v1.36, February 29th, 2016:

• Experimental method refineExtended(..) replaced by the (now permanent) method refineAdvanced(Mesh←↩

GenParams∗ pParams). This method allows much more control over the mesh density.

v1.34, February 14th, 2016:

• Vertex management subsystem revised (sometimes Vertex removement did not work as expected). Perfor-
mance improvement.

v1.33 PreRelease, January 17th, 2016: The previous official Fade version is Fade 1.24. It was released 6 months
ago. Since then major developments have been made and now a big upgrade follows with v1.33.14:

• Constraint segments may intersect now and they are automatically subdivided at their intersection points.

• Import of existing triangles is supported and one can cut through static triangulations. This version is well
tested. It also runs at two customers sites with no known problems. But due to the large amount of new code
we call this one a pre-release. Please report if you find any problems and note that it is also helpful if you
report that the library works well in your setting. The DLL names have been adapted to the safer and more
convenient pattern

fade[2D|25D]_$(Platform)_$(PlatformToolset)_$(Configuration).dll

If you upgrade from an earlier release it is recommended that you remove any previous Fade DLL's to
avoid unintended linking to an old binary.

v1.31 and 1.32, December 1st, 2015:

• Non public intermediate release, improves the CDT.

v1.30, November 18th, 2015:

• Non public intermediate release, improves the refineExtended method.

v1.29, October 17th, 2015:

• Non public intermediate release. The method importTriangles() detects invalid input data now and returns
NULL to avoid an assertion or even an infinite loop when the input data is not clean. The possibly invalid input
elements are written to stdout and a postscript file visualizes where the problem occurs.

v1.28, October 10th, 2015:

• Non public intermediate release. Customer specific code revised. Stress tests with random polygons and
segments have been made. Heap checking to ensure proper memory handling.

v1.27, October 5th, 2015:

• Non public release, improvements of the recently implemented functions, especially of customer specific code
Fade_2D::importTriangles() and Fade2D::cutTriangles().

v1.26, September 8th, 2015:

• New functions of the last unofficial v1.25 have been revised. Constraint segments may intersect now.

v1.25, August 18th, 2015:

• Intermediate pre-release with new features: importTriangles() imports arbitrary triangles into a triangulation,
cutTriangles() allows to insert a constraint segment as if it where a knife, getOrientation() provides an exact
orientation test. Zone2 objects can now also be made from a set of triangles. Constraint segments can
intersect now. These features correspond to a large amount of new code: Please test v1.25 carefully before
deploying it in a production environment.

v1.24, July 22nd, 2015:

• Public release of v1.23's improvements. And I'm sorry but we had a bug in Fade_2D::getVertexPointers(..).
The method may have missed to return a few pointers after a call to refine() or remove(). This bug is fixed
now.

Generated by Doxygen

10

v1.23, July 9th, 2015:

• Internal test release with the new refineExtended() method for the specific needs of a certain client software.

v1.22, May 25th, 2015:

• Code refactored, build system refactored and as a result improved Linux support: CentOS 6.4, Ubuntu 14.04,
Ubuntu 15.04 and similar systems.

• Removement of points has been implemented

• Delaunay meshing has been reworked,

• sqDistance() has been replaced by sqDistance2D() and sqDistance25D() because both versions are useful
in 2.5D.

• OpenMP has been removed, it was only used under Linux and currently I work on a better way to provide
multithreading.

v1.21, May 17th, 2015:

• Unofficial intermediate release. Testing new features.

v1.20, April 5th, 2015:

• 3D scene Visualization for (up to date) web browsers added. Misleading enumeration values CIS_KEEP←↩

_DELAUNAY and CIS_IGNORE_DELAUNAY have been replaced by CIS_CONFORMING_DELAUNAY and
CIS_CONSTRAINED_DELAUNAY (the two deprecated names are kept for backward compatibility).

• Bug in the free function center(Point2&,Point2&) solved.

• Major revision of the documentation pages.

• The source codes of the examples has been reengineered and is included in the present documentation
pages.

v1.19, October 26th, 2014:

• Support for Visual Studio 2013 (VC12) has been added.

• Only minor code changes.

v1.18.3, June 9th, 2014:

• Delaunay Mesh Generation has been improved: Better quality, better performance.

• API improved.

• Small bug fixes.

v1.16.1, February 10th, 2014:

• Small update: In rare cases it was possible that subdivided ConstraintSegments caused problems in combi-
nation with zone growing. This is fixed now.

v1.16, February 3rd, 2014:

• Constrained Delaunay triangulation improved,

• Delaunay meshing improved,

• aspect ratio meshing (experimental) added.

• Minor bug fixes.

• Added support for Visual Studio 2012.

v1.14, November 2013 and v1.15, December 2013:

• Non-public intermediate releases (betas with experimental features).

Generated by Doxygen

2 Module Index 11

v1.13, August 4th, 2013:

• Mesh generation (Delaunay Meshing) has been improved and two bugfixes have been made in the new
IsoContours class: A message can be suppressed now and a numeric problem has been fixed.

v1.12, June 30th, 2013:

• Starting with v1.12 the download consists of two separate libraries: The familiar full version of the 2D flavor
as well as a 2.5D evaluation version. Two very fast new methods have been added to the 2.5D edition: One
computes iso-contours, the other computes the height of a point with arbitrary (x,y) coordinates.

• Delaunay mesh generation has been improved.

• Support for VS2008, 32-bit and 64-bit, has been added.

• The performance has been improved.

v1.11, June 14th, 2013:

• Non-public intermediate release with VS2008 support and a first version of the iso-contour feature.

v1.10, March 30th, 2013:

• Delaunay Refinement (already included as preview in the previous release) has been improved and is officially
released now. Parts of the algorithm can use up to 8 CPUs under Linux if explicitly switched on using Fade2←↩

D::enableMultithreading().

• There is a new insert method in the API which uses arrays.

v1.03, Nov. 4th, 2012:

• A critical bug has been fixed, please switch to v1.03.

• Performance upgrade: A first step towards multithreading has been made in the Linux version.

• In order to facilitate the installation for users without administrator privileges the installers have been replaced
by a simple zipped directory that contains everything.

• Meshing through Delaunay Refinement is scheduled for the next release but it is pre-released as an experi-
mental feature in the current v1.03.

v1.02, 9/2012:

• An additional debug library for Windows has been added and

• the directory structure has been reorganized.

v1.01, 9/2012:

• This is a stable public release. Since v0.9 we have introduced insertion of constraint edges and the zone
concept. Moreover the API is under a namespace now. Boost types have been removed from the API to
avoid this additional dependency. New demo software has been written and the library is now also available
for 64-bit Windows.

2 Module Index

2.1 Modules

Here is a list of all modules:

Tools 14

Version Information 18

File I/O 19

Generated by Doxygen

12

Test Data Generators 22

3 Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

GEOM_FADE2D::Bbox2
Bbox2 is an axis aligned 2D bounding box 28

GEOM_FADE2D::Circle2
Circle for visualization 33

GEOM_FADE2D::Color
Color for visualization 34

GEOM_FADE2D::ConstraintGraph2
ConstraintGraph2 is a set of Constraint Edges (ConstraintSegment2) 36

GEOM_FADE2D::ConstraintSegment2
A ConstraintSegment2 represents a Constraint Edge 39

GEOM_FADE2D::Edge2
Edge2 is a directed edge 41

GEOM_FADE2D::Fade_2D
Fade_2D is the Delaunay triangulation main class 44

GEOM_FADE2D::FadeExport
FadeExport is a simple struct to export triangulation data 63

GEOM_FADE2D::Func_gtEdge2D
Functor to sort edges by 2d length (descending) 64

GEOM_FADE2D::Func_ltEdge2D
Functor to sort edges by 2d length (ascending) 64

GEOM_FADE2D::Label
Label is a Text-Label for Visualization 65

GEOM_FADE2D::MeshGenParams
Parameters for the mesh generator 65

GEOM_FADE2D::MsgBase
MsgBase, a base class for message subscriber classes 70

GEOM_FADE2D::Point2
Point 70

GEOM_FADE2D::Segment2
Segment 75

GEOM_FADE2D::SegmentChecker
SegmentChecker identifies intersecting line segments 76

GEOM_FADE2D::Triangle2
Triangle 83

GEOM_FADE2D::TriangleAroundVertexIterator
Iterator for all triangles around a given vertex 88

Generated by Doxygen

4 File Index 13

GEOM_FADE2D::UserPredicateT
User defined predicate 91

GEOM_FADE2D::Vector2
Vector 92

GEOM_FADE2D::Visualizer2
Visualizer2 is a general Postscript writer. It draws the objects Point2, Segment2, Triangle2,
Circle2 and Label 93

GEOM_FADE2D::Zone2
Zone2 is a certain defined area of a triangulation 95

4 File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

Bbox2.h 101

Circle2.h ??

Color.h 101

ConstraintGraph2.h ??

ConstraintSegment2.h 102

Edge2.h ??

Fade_2D.h ??

FadeExport.h ??

freeFunctions.h ??

Label.h ??

MeshGenParams.h ??

MsgBase.h ??

Performance.h ??

Point2.h ??

Segment2.h ??

SegmentChecker.h 103

testDataGenerators.h ??

Triangle2.h ??

TriangleAroundVertexIterator.h 103

UserPredicates.h ??

Vector2.h ??

Visualizer2.h ??

Generated by Doxygen

14

Zone2.h ??

5 Module Documentation

5.1 Tools

Functions

• void GEOM_FADE2D::edgesToPolygons (std::vector< Edge2 > &vEdgesIn, std::vector< std::vector<
Edge2 > > &vvPolygonsOut, std::vector< Edge2 > &vRemainingOut)

Create polygons from a set of edges.

• bool GEOM_FADE2D::fillHole (std::vector< std::pair< Segment2, Vector2 > > vPolygonSegments, bool
bWithRefine, bool bVerbose, std::vector< Point2 > &vCornersOut)

Fill a hole in a 3D mesh with triangles (deprecated)

• double GEOM_FADE2D::getArea2D (Point2 ∗p0, Point2 ∗p1, Point2 ∗p2)

Get 2D area of a triangle.

• void GEOM_FADE2D::getBorders (const std::vector< Triangle2 ∗ > &vT, std::vector< Segment2 > &v←↩

BorderSegmentsOut)

Get Borders.

• void GEOM_FADE2D::getDirectedEdges (std::vector< Triangle2 ∗ > &vT, std::vector< Edge2 > &v←↩

DirectedEdgesOut)

Get directed edge The directed edges of vT are returned vDirectedEdgesOut. Directed means that each edge
(a,b) with two adjacent triangles in vT is returned twice, as edge(a,b) and edge(b,a).

• FUNC_DECLSPEC Orientation2 GEOM_FADE2D::getOrientation2 (const Point2 ∗p0, const Point2 ∗p1,
const Point2 ∗p2)

Get the orientation of three points.

• FUNC_DECLSPEC Orientation2 GEOM_FADE2D::getOrientation2_mt (const Point2 ∗p0, const Point2 ∗p1,
const Point2 ∗p2)

Get Orientation2 (MT)

• void GEOM_FADE2D::getUndirectedEdges (std::vector< Triangle2 ∗ > &vT, std::vector< Edge2 > &v←↩

UndirectedEdgesOut)

Get undirected edges.

• bool GEOM_FADE2D::isSimplePolygon (std::vector< Segment2 > &vSegments)

isSimplePolygon

• void GEOM_FADE2D::pointsToPolyline (std::vector< Point2 > &vInPoints, bool bClose, std::vector<
Segment2 > &vOutSegments)

Points-to-Polyline.

• bool GEOM_FADE2D::sortRing (std::vector< Segment2 > &vRing)

Sort a vector of Segments.

• bool GEOM_FADE2D::sortRingCCW (std::vector< Segment2 > &vRing)

Sort a vector of Segments.

5.1.1 Detailed Description

5.1.2 Function Documentation

5.1.2.1 edgesToPolygons() void GEOM_FADE2D::edgesToPolygons (

std::vector< Edge2 > & vEdgesIn,

std::vector< std::vector< Edge2 > > & vvPolygonsOut,

std::vector< Edge2 > & vRemainingOut)

A number of methods in Fade returns an unorganized set of edges that delimit a certain area. But sometimes it is
more beneficial to have these edges organized as a set of one or more polygons. This is the purpose of the present
method.

Generated by Doxygen

5.1 Tools 15

Parameters

in vEdgesIn is a vector of oriented edges

out vvPolygonsOut contains one vector<Edge2> for each polygon found in the input data.

out vRemainingOut is used to return unusable remaining edges

The present function adds one vector<Edge2> to vvPolygonsOut for each polygon found in vEdgesIn. Each
such polygon starts with the leftmost vertex (and when two or more vertices share the smallest x-coordiante then
the one of them with the smallest y-coordinate is chosen). Edges that do not form a closed polygon are returned in
vRemainingOut.

Note

An Edge2 object represents an edge of a triangle. Triangle corners are always counterclockwise (CCW)
oriented. Thus outer polygons are CCW-oriented while hole-polygons are CW-oriented, see the figure.

Figure 1 Polygons created by edgesToPolygons

5.1.2.2 fillHole() bool GEOM_FADE2D::fillHole (

std::vector< std::pair< Segment2, Vector2 > > vPolygonSegments,

bool bWithRefine,

bool bVerbose,

std::vector< Point2 > & vCornersOut)

This function was experimental and is now deprecated because 3D point cloud meshing has been moved to the
WOF library.

Generated by Doxygen

16

Parameters

in vPolygonSegments contains the segments of a closed, simple input polygon along with normal
vectors. The segments are counterclockwise oriented and ordered with respect
to the surface to be created. Check twice, the orientation is very important. The
normal vectors point in the direction of the thought surface at the segment i.e., if
a hole is filled, the normal vector of an adjecent triangle is taken but if a T-joint is
filled the normal vector should be the average normal of the two triangles at the
edge.

in bWithRefine specifies if additional vertices shall be created. (bWithRefine=true is
experimental, don't use currently)

in bVerbose specifies if warnings shall be printed to stdout

out vCornersOut contains the created fill triangles, 3 corners per triangle, counterclockwise
oriented.

5.1.2.3 getArea2D() double GEOM_FADE2D::getArea2D (

Point2 ∗ p0,

Point2 ∗ p1,

Point2 ∗ p2)

Returns the area of the triangle defined by the three input points p0, p1, p2.

Parameters

in p0,p1,p2 are the corners of the triangle

5.1.2.4 getBorders() void GEOM_FADE2D::getBorders (

const std::vector< Triangle2 ∗ > & vT,

std::vector< Segment2 > & vBorderSegmentsOut)

Computes the border of the triangles in vT. The border consists of all edges having only one adjacent triangle in
vT.

Parameters

in vT are the input triangles

out vBorderSegmentsOut is used to return all border segments

5.1.2.5 getOrientation2() FUNC_DECLSPEC Orientation2 GEOM_FADE2D::getOrientation2 (

const Point2 ∗ p0,

const Point2 ∗ p1,

const Point2 ∗ p2)

This function returns the exact orientation of the points p0, p1, p2 Possible values are
ORIENTATION2_COLLINEAR if p0, p1, p2 are located on a line,
ORIENTATION2_CCW if p0, p1, p2 are counterclockwise oriented
ORIENTATION2_CW if p0, p1, p2 are clockwise oriented
Not thread-safe but a bit faster than the thread-safe version

5.1.2.6 getOrientation2_mt() FUNC_DECLSPEC Orientation2 GEOM_FADE2D::getOrientation2_mt (

const Point2 ∗ p0,

const Point2 ∗ p1,

const Point2 ∗ p2)

Generated by Doxygen

5.1 Tools 17

See also

getOrientation2(const Point2∗ p0,const Point2∗ p1,const Point2∗ p2)

This version is thread-safe.

5.1.2.7 getUndirectedEdges() void GEOM_FADE2D::getUndirectedEdges (

std::vector< Triangle2 ∗ > & vT,

std::vector< Edge2 > & vUndirectedEdgesOut)

A unique set of edges of vT is returned.

5.1.2.8 isSimplePolygon() bool GEOM_FADE2D::isSimplePolygon (

std::vector< Segment2 > & vSegments)

Parameters

in vSegments specifies segments to be checked. Degenerate segments (0-length) are ignored.

Returns

true when vSegments contains a closed polygon without selfintersections. False otherwise.

5.1.2.9 pointsToPolyline() void GEOM_FADE2D::pointsToPolyline (

std::vector< Point2 > & vInPoints,

bool bClose,

std::vector< Segment2 > & vOutSegments)

Turns a vector of points (p0,p1,p2,...pm,pn) into a vector of segments ((p0,p1),(p1,p2),...,(pm,pn)). In case that
bClose is true an additional segment (pn,p0) is constructed. Degenerate segments are ignored. Selfintersections
of the polyline are not checked.

Parameters

in vInPoints
in bClose specifies whether a closing segment shall be constructed

out vOutSegments is where the output segments are stored

5.1.2.10 sortRing() bool GEOM_FADE2D::sortRing (

std::vector< Segment2 > & vRing)

The segments in vRing are reoriented and sorted such that subsequent segments join at the endpoints.

5.1.2.11 sortRingCCW() bool GEOM_FADE2D::sortRingCCW (

std::vector< Segment2 > & vRing)

The segments in vRing are reoriented and sorted such that the resulting polygon is counterclockwise oriented and
subsequent segments join at the endpoints.

Generated by Doxygen

18

5.2 Version Information

Functions

• const char ∗ GEOM_FADE2D::getFade2DVersion ()

Get the Fade2D version string.

• FUNC_DECLSPEC int GEOM_FADE2D::getMajorVersionNumber ()

Get the major version number.

• FUNC_DECLSPEC int GEOM_FADE2D::getMinorVersionNumber ()

Get the minor version number.

• FUNC_DECLSPEC int GEOM_FADE2D::getRevisionNumber ()

Get the revision version number.

• FUNC_DECLSPEC bool GEOM_FADE2D::isRelease ()

Check if a RELEASE or a DEBUG version is used.

5.2.1 Detailed Description

Generated by Doxygen

5.3 File I/O 19

5.3 File I/O

Functions

• bool GEOM_FADE2D::readPointsBIN (const char ∗filename, std::vector< Point2 > &vPointsIn)

Read points from a binary file.

• bool GEOM_FADE2D::readSegmentsBIN (const char ∗filename, std::vector< Segment2 > &vSegmentsOut)

Read segments from a binary file.

• FUNC_DECLSPEC bool GEOM_FADE2D::readXY (const char ∗filename, std::vector< Point2 > &vPoints←↩

Out)

Read (x y) points.

• FUNC_DECLSPEC bool GEOM_FADE2D::writePointsASCII (const char ∗filename, const std::vector< Point2
∗ > &vPointsIn)

Write points to an ASCII file.

• bool GEOM_FADE2D::writePointsASCII (const char ∗filename, const std::vector< Point2 > &vPointsIn)

Write points to an ASCII file.

• bool GEOM_FADE2D::writePointsBIN (const char ∗filename, std::vector< Point2 ∗ > &vPointsIn)

Write points to a binary file.

• bool GEOM_FADE2D::writePointsBIN (const char ∗filename, std::vector< Point2 > &vPointsIn)

Write points to a binary file.

• bool GEOM_FADE2D::writeSegmentsBIN (const char ∗filename, std::vector< Segment2 > &vSegmentsIn)

Write segments to a binary file.

5.3.1 Detailed Description

5.3.2 Function Documentation

5.3.2.1 readPointsBIN() bool GEOM_FADE2D::readPointsBIN (

const char ∗ filename,

std::vector< Point2 > & vPointsIn)

Reads points from a binary file.

See also

writePointsBIN()

5.3.2.2 readSegmentsBIN() bool GEOM_FADE2D::readSegmentsBIN (

const char ∗ filename,

std::vector< Segment2 > & vSegmentsOut)

Reads segments from a binary file of type 21 or 31

See also

writeSegmentsBIN()

5.3.2.3 readXY() FUNC_DECLSPEC bool GEOM_FADE2D::readXY (

const char ∗ filename,

std::vector< Point2 > & vPointsOut)

Reads points from an ASCII file. Expected file format: Two coordinates (x y) per line, whitespace separated.

Generated by Doxygen

20

5.3.2.4 writePointsASCII() [1/2] FUNC_DECLSPEC bool GEOM_FADE2D::writePointsASCII (

const char ∗ filename,

const std::vector< Point2 ∗ > & vPointsIn)

Writes points to an ASCII file, two coordinates (x y) per line, whitespace separated.

Note

Data exchange through ASCII files is easy and convenient but floating point coordinates are not necessarily
exact when represented as decimal numbers. If the tiny rounding errors can't be accepted in your setting you
are advised to write binary files, (use writePointsBIN())

5.3.2.5 writePointsASCII() [2/2] bool GEOM_FADE2D::writePointsASCII (

const char ∗ filename,

const std::vector< Point2 > & vPointsIn)

Write points to an ASCII file

See also

readPointsASCII()

5.3.2.6 writePointsBIN() [1/2] bool GEOM_FADE2D::writePointsBIN (

const char ∗ filename,

std::vector< Point2 ∗ > & vPointsIn)

Writes points to a binary file

See also

readPointsBIN()

5.3.2.7 writePointsBIN() [2/2] bool GEOM_FADE2D::writePointsBIN (

const char ∗ filename,

std::vector< Point2 > & vPointsIn)

File format:
int filetype (20)
size_t numPoints (vPointsIn.size())
double x0
double y0
double z0
...
double xn
double yn
double zn

Note

Since version 1.64 the binary file format written by 32-bit machines is identical with the file format of x64
machines i.e., the numPoints value is always 8 bytes, not 4. This change affects only 32-bit programs.

5.3.2.8 writeSegmentsBIN() bool GEOM_FADE2D::writeSegmentsBIN (

const char ∗ filename,

std::vector< Segment2 > & vSegmentsIn)

Binary file format:
int filetype (21)

Generated by Doxygen

5.3 File I/O 21

size_t numSegments (vSegmentsIn.size())
double x0_source
double y0_source
double x0_target
double y0_target
...
double xn_source
double yn_source
double xn_target
double yn_target

Note

Since version 1.64 the binary file format written by 32-bit machines is identical with the file format of x64
machines i.e., the numSegments value is always 8 bytes, not 4. This change affects only 32-bit programs.

See also

readSegmentsBIN()

Generated by Doxygen

22

5.4 Test Data Generators

Functions

• FUNC_DECLSPEC void GEOM_FADE2D::generateCircle (int numPoints, double x, double y, double radiusX,
double radiusY, std::vector< Point2 > &vCirclePointsOut)

Generate a circle.
• FUNC_DECLSPEC void GEOM_FADE2D::generateRandomNumbers (size_t num, double min, double max,

std::vector< double > &vRandomNumbersOut, unsigned int seed=0)

Generate random numbers.
• FUNC_DECLSPEC void GEOM_FADE2D::generateRandomPoints (size_t numRandomPoints, double min,

double max, std::vector< Point2 > &vRandomPointsOut, unsigned int seed=0)

Generate random points.
• FUNC_DECLSPEC void GEOM_FADE2D::generateRandomPolygon (size_t numSegments, double min,

double max, std::vector< Segment2 > &vPolygonOut, unsigned int seed=0)

Generate a random simple polygon.
• FUNC_DECLSPEC void GEOM_FADE2D::generateRandomSegments (size_t numSegments, double min,

double max, double maxLen, std::vector< Segment2 > &vSegmentsOut, unsigned int seed)

Generate random line segments.
• FUNC_DECLSPEC void GEOM_FADE2D::generateSineSegments (int numSegments, int numPeriods, dou-

ble xOffset, double yOffset, double xFactor, double yFactor, bool bSwapXY, std::vector< Segment2 > &v←↩

SineSegmentsOut)

Generate segments from a sine function.
• FUNC_DECLSPEC void GEOM_FADE2D::shear (std::vector< Point2 > &vPointsInOut, double shearX,

double shearY)

5.4.1 Detailed Description

5.4.2 Generate random polygons and other test objects

Theory, careful programming and automated software stress tests. Neither of them can replace the other one.
Testing with random data helps to discover errors early. Fade provides random object generators for your automated
software stress tests:

• Random simple polygons

• Random segments

• Random point clouds

• Random numbers.

• Polylines from sine functions

If you discover an error in your software you must be able to reproduce the input data that has triggered your bug.
For this reason the random object generators take a seed value to initialize the internal random number generators.
A certain seed value always leads to the same sequence of objects. Only when the special seed value 0 is used
then the random number generators are initialized from the system time.

5.4.3 Function Documentation

5.4.3.1 generateCircle() FUNC_DECLSPEC void GEOM_FADE2D::generateCircle (

int numPoints,

double x,

double y,

double radiusX,

double radiusY,

std::vector< Point2 > & vCirclePointsOut)

Returns points on a circle centered at the given coordinates

Generated by Doxygen

5.4 Test Data Generators 23

5.4.3.2 generateRandomNumbers() FUNC_DECLSPEC void GEOM_FADE2D::generateRandomNumbers (

size_t num,

double min,

double max,

std::vector< double > & vRandomNumbersOut,

unsigned int seed = 0)

Parameters

num Number of random numbers to be generated

min Lower bound
max Upper bound

out vRandomNumbersOut is the output vector

seed initializes the random number generator RNG (default: 0...mapped to a
random seed, other values: constant initialization)

Note

Reproducable random numbers are often desirable when software is tested with random geometric construc-
tions. Thus each seed value different from 0 leads to its own, reproducible, output sequence. In contrast the
seed value 0 is mapped to random initialization of the RNG. In this case the RNG will produce a different
output sequence each time it is called.

5.4.3.3 generateRandomPoints() FUNC_DECLSPEC void GEOM_FADE2D::generateRandomPoints (

size_t numRandomPoints,

double min,

double max,

std::vector< Point2 > & vRandomPointsOut,

unsigned int seed = 0)

Parameters

numRandomPoints Number of points to be generated

min Lower bound (x,y)

max Upper bound (x,y)

out vRandomPointsOut is the output vector

seed initializes the random number generator RNG (default: 0...mapped to a random
seed, other values: constant initialization)

Generated by Doxygen

24

Figure 2 Point generator

5.4.3.4 generateRandomPolygon() FUNC_DECLSPEC void GEOM_FADE2D::generateRandomPolygon (

size_t numSegments,

double min,

double max,

std::vector< Segment2 > & vPolygonOut,

unsigned int seed = 0)

Parameters

numSegments Number of segments to be generated

min Lower bound (x,y)

max Upper bound (x,y)

out vPolygonOut is the output vector

seed initializes the random number generator RNG (default: 0...mapped to a random
seed, other values: constant initialization)

Generated by Doxygen

5.4 Test Data Generators 25

Figure 3 Polygon generator: Random simple polygon

5.4.3.5 generateRandomSegments() FUNC_DECLSPEC void GEOM_FADE2D::generateRandomSegments (

size_t numSegments,

double min,

double max,

double maxLen,

std::vector< Segment2 > & vSegmentsOut,

unsigned int seed)

Parameters

numSegments Number of segments to be generated

min Lower bound (x,y)

max Upper bound (x,y)

maxLen Maximal segment length

out vSegmentsOut is the output vector

seed initializes the random number generator RNG (default: 0...mapped to a random
seed, other values: constant initialization)

Generated by Doxygen

26

Figure 4 Segment generator: Random line segments

5.4.3.6 generateSineSegments() FUNC_DECLSPEC void GEOM_FADE2D::generateSineSegments (

int numSegments,

int numPeriods,

double xOffset,

double yOffset,

double xFactor,

double yFactor,

bool bSwapXY,

std::vector< Segment2 > & vSineSegmentsOut)

Parameters

numSegments Number of segments to be generated

numPeriods Number of periods of the sine function

xOffset Offset of the output x-coordinates

yOffset Offset of the output y-coordinates

xFactor Factor to scale the sine function in x direction
yFactor Factor to scale the sine function in y direction

bSwapXY Swap the x and y coordinate of the function

out vSineSegmentsOut is the output vector

Generated by Doxygen

5.4 Test Data Generators 27

•
Figure 5 Polyline generator: Polylines from sine functions

Generated by Doxygen

28

6 Class Documentation

6.1 GEOM_FADE2D::Bbox2 Class Reference

Bbox2 is an axis aligned 2D bounding box.
#include <Bbox2.h>

Public Member Functions

• Bbox2 (GeomTest ∗pGeomTest_=NULL)

Constructor.

• bool add (const Point2 &p)

Add a point.

• bool add (size_t numPoints, double ∗coordinates)

Add points.

• bool add (std::vector< Point2 ∗ >::const_iterator start_it, std::vector< Point2 ∗ >::const_iterator end_it)

Add points.

• bool add (std::vector< Point2 >::const_iterator start_it, std::vector< Point2 >::const_iterator end_it)

Add points.

• Point2 computeCenter () const

Compute the 2D midpoint.

• bool doIntersect (const Bbox2 &other) const

Check intersection.

• void doubleTheBox ()

Double the box.

• void enlargeRanges (double factor)
• double get_maxX () const

Get maxX.

• double get_maxY () const

Get maxY.

• double get_minX () const

Get minX.

• double get_minY () const

Get minY.

• void getBounds (double &minX_, double &maxX_, double &minY_, double &maxY_) const

Get bounds.

• void getCorners (std::vector< Point2 > &vBoxCorners) const

Get corners.

• double getMaxCoord () const

Get maximum coordinate.

• Point2 getMaxPoint () const

Get the max point.

• double getMaxRange () const

Get max range.

• double getMinCoord () const

Get minimum coordinate.

• Point2 getMinPoint () const

Get the min point.

• void getOffsetCorners (double offset, std::vector< Point2 > &vBoxCorners) const

Get offset corners.

• double getRangeX () const

Get x-range.

Generated by Doxygen

6.1 GEOM_FADE2D::Bbox2 Class Reference 29

• double getRangeY () const

Get y-range.

• void inflateIfDegenerate (double val)

Inflate if Degenerate.

• bool isInBox (const Point2 &p) const

Point-in-Box Test.

• bool isValid () const

Check if the bounds are valid.

• Bbox2 operator+ (const Bbox2 &b)

Add a bounding box.

• void setMaxX (double val)

Set maxX.

• void setMaxY (double val)

Set maxY.

• void setMinX (double val)

Set minX.

• void setMinY (double val)

Set minY.

Protected Member Functions

• void treatPointForInvalidBox (const Point2 &p)

• void treatPointForValidBox (const Point2 &p)

Protected Attributes

• bool bValid

• double maxX

• double maxY

• double minX

• double minY

• GeomTest ∗ pGeomTest

Friends

• std::ostream & operator<< (std::ostream &stream, Bbox2 &pC)

• std::ostream & operator<< (std::ostream &stream, const Bbox2 &pC)

6.1.1 Detailed Description

6.1.2 Constructor & Destructor Documentation

6.1.2.1 Bbox2() GEOM_FADE2D::Bbox2::Bbox2 (

GeomTest ∗ pGeomTest_ = NULL) [inline], [explicit]

Minimum bounds are initialized to DBL_MAX. Maximum bounds are initialized to -DBL_MAX. Box is not valid yet

6.1.3 Member Function Documentation

Generated by Doxygen

30

6.1.3.1 add() [1/4] bool GEOM_FADE2D::Bbox2::add (

const Point2 & p) [inline]

Extends the 2D bounding box if required.

Returns

true if the bounding box changes, false otherwise

6.1.3.2 add() [2/4] bool GEOM_FADE2D::Bbox2::add (

size_t numPoints,

double ∗ coordinates) [inline]

Extends the 2D bounding box if required.

Returns

true if the bounding box changes, false otherwise

6.1.3.3 add() [3/4] bool GEOM_FADE2D::Bbox2::add (

std::vector< Point2 ∗ >::const_iterator start_it,

std::vector< Point2 ∗ >::const_iterator end_it) [inline]

Extends the 2D bounding box if required.

Returns

true if the bounding box changes, false otherwise

6.1.3.4 add() [4/4] bool GEOM_FADE2D::Bbox2::add (

std::vector< Point2 >::const_iterator start_it,

std::vector< Point2 >::const_iterator end_it) [inline]

Extends the 2D bounding box if required.

Returns

true if the bounding box changes, false otherwise

6.1.3.5 computeCenter() Point2 GEOM_FADE2D::Bbox2::computeCenter () const

6.1.3.6 doIntersect() bool GEOM_FADE2D::Bbox2::doIntersect (

const Bbox2 & other) const

Two valid bounding boxes intersect if they share at least one point in the XY plane.

6.1.3.7 doubleTheBox() void GEOM_FADE2D::Bbox2::doubleTheBox ()

Changes the bounds such that the box grows in each direction by half the previous range

6.1.3.8 get_maxX() double GEOM_FADE2D::Bbox2::get_maxX () const [inline]

Returns

maxX

Generated by Doxygen

6.1 GEOM_FADE2D::Bbox2 Class Reference 31

6.1.3.9 get_maxY() double GEOM_FADE2D::Bbox2::get_maxY () const [inline]

Returns

maxY

6.1.3.10 get_minX() double GEOM_FADE2D::Bbox2::get_minX () const [inline]

Returns

minX

6.1.3.11 get_minY() double GEOM_FADE2D::Bbox2::get_minY () const [inline]

Returns

minY

6.1.3.12 getBounds() void GEOM_FADE2D::Bbox2::getBounds (

double & minX_,

double & maxX_,

double & minY_,

double & maxY_) const

6.1.3.13 getCorners() void GEOM_FADE2D::Bbox2::getCorners (

std::vector< Point2 > & vBoxCorners) const

Convenience function: Returns the 4 corners of the bounding box

6.1.3.14 getMaxCoord() double GEOM_FADE2D::Bbox2::getMaxCoord () const [inline]

Returns

the largest coordinate value, i.e. max(maxX,maxY)

6.1.3.15 getMaxPoint() Point2 GEOM_FADE2D::Bbox2::getMaxPoint () const [inline]

Returns

the 2D corner point with the maximum coordinates

6.1.3.16 getMaxRange() double GEOM_FADE2D::Bbox2::getMaxRange () const [inline]

Returns

the largest range, i.e. max(getRangeX(),getRangeY())

6.1.3.17 getMinCoord() double GEOM_FADE2D::Bbox2::getMinCoord () const [inline]

Returns

the smallest coordinate value, i.e. min(minX,minY)

Generated by Doxygen

32

6.1.3.18 getMinPoint() Point2 GEOM_FADE2D::Bbox2::getMinPoint () const [inline]

Returns

the 2D corner point with the minimum coordinates

6.1.3.19 getOffsetCorners() void GEOM_FADE2D::Bbox2::getOffsetCorners (

double offset,

std::vector< Point2 > & vBoxCorners) const

Convenience function: Returns the 4 corners of an enlarged box. The box es enlarged by offset in each direction

6.1.3.20 getRangeX() double GEOM_FADE2D::Bbox2::getRangeX () const [inline]

Returns

maxX-minX

6.1.3.21 getRangeY() double GEOM_FADE2D::Bbox2::getRangeY () const [inline]

Returns

maxY-minY

6.1.3.22 inflateIfDegenerate() void GEOM_FADE2D::Bbox2::inflateIfDegenerate (

double val) [inline]

When only one point has been added to Bbox2 or when all points have the same x- and/or y- coordinates then
Bbox2 is degenerate. This is a valid state but sometimes undesireable. The present method inflates the Bbox2 by
adding /p val to maxX and/or maxY.

6.1.3.23 isInBox() bool GEOM_FADE2D::Bbox2::isInBox (

const Point2 & p) const

Returns

true if minX <= p.x() <=maxX and minY <= p.y() <=maxY or false otherwise.

6.1.3.24 isValid() bool GEOM_FADE2D::Bbox2::isValid () const [inline]

The bounds are valid when at least one point has been added or when set-methods have been used to set
minX<=maxX and minY<=maxY

6.1.3.25 operator+() Bbox2 GEOM_FADE2D::Bbox2::operator+ (

const Bbox2 & b)

Extends the 2D bounding box if required.

Returns

the resulting bounding box

The documentation for this class was generated from the following file:

• Bbox2.h

Generated by Doxygen

6.2 GEOM_FADE2D::Circle2 Class Reference 33

6.2 GEOM_FADE2D::Circle2 Class Reference

Circle for visualization.
#include <Circle2.h>

Public Member Functions

• Circle2 (const Point2 ¢er_, double sqRadius_)

Constructor.

• Circle2 (double x, double y, double sqRadius_)

Constructor.

• Point2 getCenter ()

Get the center of the circle.

• double getRadius ()

Get the radius of the circle.

• double getSqRadius ()

Get the squared radius of the circle.

Protected Attributes

• Point2 center
• double sqRadius

Friends

• std::ostream & operator<< (std::ostream &stream, Circle2 b)

6.2.1 Detailed Description

See also

Visualizer2

6.2.2 Constructor & Destructor Documentation

6.2.2.1 Circle2() [1/2] GEOM_FADE2D::Circle2::Circle2 (

double x,

double y,

double sqRadius_)

Parameters

x is x-coordinate of the center
y is y-coordinate of the center

sq←↩

Radius_
is the squared radius of the circle

Warning

The method expects the squared radius

6.2.2.2 Circle2() [2/2] GEOM_FADE2D::Circle2::Circle2 (

const Point2 & center_,

double sqRadius_)

Generated by Doxygen

34

Parameters

center_ center of the circle
sq←↩

Radius_
squared radius of the circle

Warning

The method expects the squared radius

6.2.3 Member Function Documentation

6.2.3.1 getCenter() Point2 GEOM_FADE2D::Circle2::getCenter ()

Returns

a Point2 which represents the center

6.2.3.2 getRadius() double GEOM_FADE2D::Circle2::getRadius ()

Returns

the radius

6.2.3.3 getSqRadius() double GEOM_FADE2D::Circle2::getSqRadius ()

Returns

the squared radius

The documentation for this class was generated from the following file:

• Circle2.h

6.3 GEOM_FADE2D::Color Class Reference

Color for visualization.
#include <Color.h>

Public Member Functions

• Color (Colorname c, float width_=0.001, bool bFill_=false)

• Color (double r_, double g_, double b_, double width_, bool bFill_=false)

• bool operator!= (const Color &other) const

• bool operator< (const Color &other) const

• bool operator== (const Color &other) const

Static Public Member Functions

• static Colorname getNextColorName ()

Generated by Doxygen

6.3 GEOM_FADE2D::Color Class Reference 35

Public Attributes

• float b

Blue.

• bool bFill

Fill the shape or not.

• float g

Green.

• float r

Red.

• float width

Linewidth.

Static Public Attributes

• static size_t currentColorName

Friends

• std::ostream & operator<< (std::ostream &stream, const Color &c)

6.3.1 Detailed Description

See also

Visualizer2

6.3.2 Constructor & Destructor Documentation

6.3.2.1 Color() [1/2] GEOM_FADE2D::Color::Color (

double r_,

double g_,

double b_,

double width_,

bool bFill_ = false)

Parameters

r_ red
g_ green

b_ blue
width←↩

_
linewidth

bFill←↩

_
fill (default: false)

Note

bFill_=true has two meanings: Objects that can be filled (Triangle2, Circle2) are filled with the rgb-color but
line segments get x-marks at their endpoints.

6.3.2.2 Color() [2/2] GEOM_FADE2D::Color::Color (

Colorname c,

Generated by Doxygen

36

float width_ = 0.001,

bool bFill_ = false)

For convenience predefined colors can be used.

Parameters

c is a predefined color name

width←↩

_
linewidth (default: 0.001)

bFill←↩

_
fill (default: false)

Note

bFill_=true has two meanings: Objects that can be filled (Triangle2, Circle2) are filled with the rgb-color but
line segments get x-marks at their endpoints.

The documentation for this class was generated from the following file:

• Color.h

6.4 GEOM_FADE2D::ConstraintGraph2 Class Reference

ConstraintGraph2 is a set of Constraint Edges (ConstraintSegment2)
#include <ConstraintGraph2.h>

Public Member Functions

• void getChildConstraintSegments (std::vector< ConstraintSegment2 ∗ > &vConstraintSegments_) const

Get child ConstraintSegment2 objects.

• void getDirectChildren (ConstraintSegment2 ∗pParent, ConstraintSegment2 ∗&pChild0, ConstraintSegment2
∗&pChild1)

Get direct children.

• Dt2 ∗ getDt2 ()
• ConstraintInsertionStrategy getInsertionStrategy () const

Get the constraint insertion strategy.

• void getOriginalConstraintSegments (std::vector< ConstraintSegment2 ∗ > &vConstraintSegments_) const

Get the original ConstraintSegment2 objects.

• void getPolygonVertices (std::vector< Point2 ∗ > &vVertices_)

Get the vertices of the constraint segments.

• bool isConstraint (ConstraintSegment2 ∗pCSeg) const

Check if a ConstraintSegment2 is a member.

• bool isConstraint (Point2 ∗p0, Point2 ∗p1) const

Check if an edge is a constraint.

• bool isOriented () const

Are the segments of the constraint graph oriented?

• bool isPolygon () const

Does the constraint graph form a closed polygon?

• bool isReverse (ConstraintSegment2 ∗pCSeg) const
• bool makeDelaunay (double minLength)
• void show (const char ∗name)

Visualization.

• void show (Visualizer2 ∗pVis, const Color &color)

Visualization.

Generated by Doxygen

6.4 GEOM_FADE2D::ConstraintGraph2 Class Reference 37

Protected Attributes

• bool bIsOriented
• bool bIsPolygon
• ConstraintInsertionStrategy cis
• std::map< ConstraintSegment2 ∗, bool, func_ltDerefPtr< ConstraintSegment2 ∗ > > mCSegReverse
• std::map< Point2 ∗, size_t > mSplitPointNum
• Dt2 ∗ pDt2
• GeomTest ∗ pGeomPredicates
• std::vector< ConstraintSegment2 ∗ > vCSegParents

6.4.1 Detailed Description

See also

Fade_2D::createConstraint()

Figure 6 Constraint Delaunay triangulation

6.4.2 Member Function Documentation

6.4.2.1 getChildConstraintSegments() void GEOM_FADE2D::ConstraintGraph2::getChildConstraint←↩

Segments (

std::vector< ConstraintSegment2 ∗ > & vConstraintSegments_) const

Returns the current constraint segments, i.e., the original ones or, if splitted, their child segments.

6.4.2.2 getDirectChildren() void GEOM_FADE2D::ConstraintGraph2::getDirectChildren (

ConstraintSegment2 ∗ pParent,

ConstraintSegment2 ∗& pChild0,

ConstraintSegment2 ∗& pChild1)

Parameters

in pParent is a ConstraintSegment that may have been splitted

out pChild0,pChild1 are the direct child segments of pParent. They can be alive or dead (splitted).

The children are returned in the correct order of the present ConstraintGraph2.

6.4.2.3 getDt2() Dt2∗ GEOM_FADE2D::ConstraintGraph2::getDt2 ()

Generated by Doxygen

38

Returns

the Delaunay class it belongs to

6.4.2.4 getInsertionStrategy() ConstraintInsertionStrategy GEOM_FADE2D::ConstraintGraph2::get←↩

InsertionStrategy () const

Returns

CIS_CONFORMING_DELAUNAY or CIS_CONSTRAINED_DELAUNAY

6.4.2.5 getOriginalConstraintSegments() void GEOM_FADE2D::ConstraintGraph2::getOriginalConstraint←↩

Segments (

std::vector< ConstraintSegment2 ∗ > & vConstraintSegments_) const

Get the original, ConstraintSegment2 objects. They are not subdivided but may be dead and have child segments
(which may also be dead and have child segments...)

6.4.2.6 getPolygonVertices() void GEOM_FADE2D::ConstraintGraph2::getPolygonVertices (

std::vector< Point2 ∗ > & vVertices_)

Use this method to retrieve the vertices of the present ConstraintGraph2. If it forms ONE closed polygon, then
the vertices are ordered and oriented in counterclockwise direction, e.g. (a,b,b,c,c,d,d,a). Otherwise they are
returned in original order. Be aware that the order is only maintained if the ConstraintGraph2 has been created with
Fade_2D::createConstraint(..,..,bOrientedSegments=true).

Note

The segments of the present ConstraintGraph2 may have been splitted. In this case the split points are also
contained in the result. If, in the above example, the ConstraintSegment2(a,b) has been subdivided at vertex
x then the result is (a,x,x,b,b,c,c,d,d,a).

See also

Do you already know Zone2::getBorderEdges() and edgesToPolygons() ?

6.4.2.7 isConstraint() [1/2] bool GEOM_FADE2D::ConstraintGraph2::isConstraint (

ConstraintSegment2 ∗ pCSeg) const

The present ConstraintGraph2 has been created using a set of edges and this method checks if the
ConstraintSegment2 pCSeg is one of them. Original edges that have been splitted are not alive anymore
and are no members. But their child segments are members.

6.4.2.8 isConstraint() [2/2] bool GEOM_FADE2D::ConstraintGraph2::isConstraint (

Point2 ∗ p0,

Point2 ∗ p1) const

Checks if the edge (p0,p1) is a constraint of the present ConstraintGraph2 object.

6.4.2.9 isOriented() bool GEOM_FADE2D::ConstraintGraph2::isOriented () const

Returns

true if the constraint graph has been created with bOrientedSegments=true or if automatic reorientation was
possible which is the case for simple polygons.

Generated by Doxygen

6.5 GEOM_FADE2D::ConstraintSegment2 Class Reference 39

6.4.2.10 isPolygon() bool GEOM_FADE2D::ConstraintGraph2::isPolygon () const

Returns

true when the present ConstraintGraph forms a closed polygon.

Note

This method won't check if it is a simple polygon (one without self-intersections).

6.4.2.11 isReverse() bool GEOM_FADE2D::ConstraintGraph2::isReverse (

ConstraintSegment2 ∗ pCSeg) const

Get the orientation of a ConstraintSegment2
A ConstraintSegment2 pCSeg is unoriented because it may participate (with different orientations) in more than
just one ConstraintGraph2 and thus the vertices returned by pCSeg->getSrc() and pCSeg->getTrg() do not carry
any orientation information. However, the orientation of pCSeg is stored in the ConstraintGraph2 objects where
pCSeg is a member and this method returns if the source and target vertex must be exchanged to match the
present graph's direction.

6.4.2.12 makeDelaunay() bool GEOM_FADE2D::ConstraintGraph2::makeDelaunay (

double minLength)

Improve the triangle quality (make Delaunay)
Constraint segments can make a triangulation locally non-delaunay i.e., the empty-circumcircle property is not
maintained for all triangles. makeDelaunay() subdivides the constraint segments so that they appear naturally
as part of the Delaunay triangulation. Use this function to create visually more appealing triangles with better aspect
ratios.

Parameters

in minLength specifies a lower bound. Constraint segments smaller than minLength are not
subdivided. This parameter avoids excessive subdivision in narrow settings.

Returns

TRUE when all required somedevisions have been carried out or FALSE when minLength has avoided
further subdivision.

6.4.2.13 show() [1/2] void GEOM_FADE2D::ConstraintGraph2::show (

const char ∗ name)

6.4.2.14 show() [2/2] void GEOM_FADE2D::ConstraintGraph2::show (

Visualizer2 ∗ pVis,

const Color & color)

The documentation for this class was generated from the following file:

• ConstraintGraph2.h

6.5 GEOM_FADE2D::ConstraintSegment2 Class Reference

A ConstraintSegment2 represents a Constraint Edge.
#include <ConstraintSegment2.h>

Generated by Doxygen

40

Public Member Functions

• void getChildrenAndSplitPoint (ConstraintSegment2 ∗&pCSeg0, ConstraintSegment2 ∗&pCSeg1, Point2
∗&pSplitPoint)

Get the children and the split point Retrieve the two direct children of the current ConstraintSegment2 as well as the
split point.

• void getChildrenRec (std::vector< ConstraintSegment2 ∗ > &vChildConstraintSegments)

Get all children Recursively retrieve all children of the current ConstraintSegment2.

• ConstraintInsertionStrategy getCIS () const

Get the Constraint Insertion Strategy (CIS)

• Point2 ∗ getSrc () const

Get the first endpoint.

• Point2 ∗ getTrg () const

Get the second endpoint.

• Point2 ∗ insertAndSplit (const Point2 &splitPoint)

Split a constraint segment.

• bool isAlive () const

Check if the present ConstraintSegment2 is alive.

• bool operator< (const ConstraintSegment2 &pOther) const

operator<(..) Compares the vertex pointers of the endpoints, not the length

• bool split_combinatorialOnly (Point2 ∗pSplit)

Split a constraint segment.

Public Attributes

• int label

Protected Attributes

• bool bAlive
• ConstraintInsertionStrategy cis
• Point2 ∗ p0
• Point2 ∗ p1
• std::vector< ConstraintSegment2 ∗ > vChildren

Static Protected Attributes

• static int runningLabel

Friends

• class ConstraintGraph2
• class ConstraintMgr
• std::ostream & operator<< (std::ostream &stream, const ConstraintSegment2 &cSeg)

6.5.1 Detailed Description

A ConstraintSegment2 can belong to more than one ConstraintGraph2 object, thus it is unoriented. But the
ConstraintGraph knows the orientation of its ConstraintSegment2's.

6.5.2 Member Function Documentation

Generated by Doxygen

6.6 GEOM_FADE2D::Edge2 Class Reference 41

6.5.2.1 getCIS() ConstraintInsertionStrategy GEOM_FADE2D::ConstraintSegment2::getCIS () const

Returns

the constraint insertion strategy (CIS) of the present object

6.5.2.2 getSrc() Point2∗ GEOM_FADE2D::ConstraintSegment2::getSrc () const

Returns

the first vertex

6.5.2.3 getTrg() Point2∗ GEOM_FADE2D::ConstraintSegment2::getTrg () const

Returns

the second vertex

6.5.2.4 insertAndSplit() Point2∗ GEOM_FADE2D::ConstraintSegment2::insertAndSplit (

const Point2 & splitPoint)

Splits the ConstraintSegment2 (which must be alive) at splitPoint.
It may be impossible to represent a point on a certain line segment using floatingpoint arithmetic. Therefore it is
highly recommended to split a ConstraintSegment2 object not just be inserting points into the triangulation but using
the present method. It does not require that splitPoint is exactly on the segment.

Note

A splitted ConstraintSegment2 is dead and it has two child segments (which may also be dead and have
children). The class is organized as a binary tree.

6.5.2.5 isAlive() bool GEOM_FADE2D::ConstraintSegment2::isAlive () const

Returns

TRUE when the object is alive, FALSE otherwise

6.5.2.6 split_combinatorialOnly() bool GEOM_FADE2D::ConstraintSegment2::split_combinatorialOnly

(

Point2 ∗ pSplit)

internal use only (unless you do something very unusual)
The documentation for this class was generated from the following file:

• ConstraintSegment2.h

6.6 GEOM_FADE2D::Edge2 Class Reference

Edge2 is a directed edge.
#include <Edge2.h>

Generated by Doxygen

42

Public Member Functions

• Edge2 (const Edge2 &e_)
• Edge2 (Triangle2 ∗pT, int oppIdx_)

Constructor.

• int getIndex () const
• double getLength2D () const
• void getPoints (Point2 ∗&p1, Point2 ∗&p2) const

Get the endpoints.

• Point2 ∗ getSrc () const

Get the source point.

• Point2 ∗ getTrg () const

Get the target point.

• Triangle2 ∗ getTriangle () const
• void getTriangles (Triangle2 ∗&pT0, Triangle2 ∗&pT1, int &idx0, int &idx1) const
• bool operator!= (const Edge2 &e) const

operator!=()

• bool operator< (const Edge2 &e) const

operator<()

• Edge2 & operator= (const Edge2 &other)
• bool operator== (const Edge2 &e) const

operator==()

Protected Attributes

• int oppIdx
• Triangle2 ∗ pT

Friends

• std::ostream & operator<< (std::ostream &stream, const Edge2 &e)

6.6.1 Constructor & Destructor Documentation

6.6.1.1 Edge2() GEOM_FADE2D::Edge2::Edge2 (

Triangle2 ∗ pT,

int oppIdx_)

Parameters

pT is the triangle from which the edge is constructed

opp←↩

Idx_
is intra-triangle-index of the opposite vertex (of the edge) in pT

The orientation of the constructed Edge2 is counterclockwise (CCW) with respect to pT. Example: Edge2(pT,0)
creates an edge from pT->getCorner(1) to pT->getCorner(2).

6.6.2 Member Function Documentation

6.6.2.1 getIndex() int GEOM_FADE2D::Edge2::getIndex () const

Get the opposite index

Generated by Doxygen

6.6 GEOM_FADE2D::Edge2 Class Reference 43

Returns

the intra-triangle-index of the opposite vertex

6.6.2.2 getLength2D() double GEOM_FADE2D::Edge2::getLength2D () const

Get the length

Returns

the length of the edge

6.6.2.3 getPoints() void GEOM_FADE2D::Edge2::getPoints (

Point2 ∗& p1,

Point2 ∗& p2) const

returns the source point of the edge as p1 and the target point as p2

6.6.2.4 getSrc() Point2∗ GEOM_FADE2D::Edge2::getSrc () const

Returns

the source point of the edge, i.e. pT->getCorner((oppIdx+1)%3)

6.6.2.5 getTrg() Point2∗ GEOM_FADE2D::Edge2::getTrg () const

Returns

the target point of the edge, i.e. pT->getCorner((oppIdx+2)%3)

6.6.2.6 getTriangle() Triangle2∗ GEOM_FADE2D::Edge2::getTriangle () const

Get the triangle

Returns

the triangle whose directed edge the present edge is

6.6.2.7 getTriangles() void GEOM_FADE2D::Edge2::getTriangles (

Triangle2 ∗& pT0,

Triangle2 ∗& pT1,

int & idx0,

int & idx1) const

Get the triangles

Returns

the two adjacent triangles of the present edge along with their intra-triangle-indices

Parameters

pT0 is used to return the triangle whose directed edge the present edge is

idx0 is the opposite intra-triangle-index in pT0 of the present edge

pT1 is the other adjacent triangle at the present edge (or NULL)

idx1 is the intra-triangle index of the present edge in pT1 (or -1)

Generated by Doxygen

44

6.6.2.8 operator"!=() bool GEOM_FADE2D::Edge2::operator!= (

const Edge2 & e) const [inline]

operator!=() returns true if the compared edges are different. Be aware that edges are directed and therefore two
adjacent triangles do not share the same edge.

6.6.2.9 operator<() bool GEOM_FADE2D::Edge2::operator< (

const Edge2 & e) const [inline]

operator<() does NOT compare edge lengths but the associated triangle pointers and intra-triangle indices. This is
useful when edges are used in STL containers.

6.6.2.10 operator==() bool GEOM_FADE2D::Edge2::operator== (

const Edge2 & e) const [inline]

operator==() compares oriented edges, i.e., it returns only true when the two edges have been made from the same
triangle and the same intra-triangle-index.
The documentation for this class was generated from the following file:

• Edge2.h

6.7 GEOM_FADE2D::Fade_2D Class Reference

Fade_2D is the Delaunay triangulation main class.
#include <Fade_2D.h>

Public Member Functions

• Fade_2D (unsigned numExpectedVertices=3)

Constructor of the main triangulation class.

• ∼Fade_2D ()

Destructor.

• void applyConstraintsAndZones ()

Apply conforming constraints and zones (deprecated!)

• bool checkValidity (bool bCheckEmptyCircleProperty, const char ∗msg) const

Checks if a triangulation is valid.

• Bbox2 computeBoundingBox () const

Compute the axis-aligned bounding box of the points.

• ConstraintGraph2 ∗ createConstraint (std::vector< Segment2 > &vSegments, ConstraintInsertionStrategy
cis, bool bOrientedSegments=false)

Add constraint edges (edges, polyline, polygon)

• Zone2 ∗ createZone (const std::vector< ConstraintGraph2 ∗> &vConstraintGraphs, ZoneLocation zoneLoc,
const Point2 &startPoint, bool bVerbose=true)

Create a zone limited by multiple ConstraintGraph2 objects by growing from a start point.

• Zone2 ∗ createZone (ConstraintGraph2 ∗pConstraintGraph, ZoneLocation zoneLoc, bool bVerbose=true)

Create a zone.

• Zone2 ∗ createZone (ConstraintGraph2 ∗pConstraintGraph, ZoneLocation zoneLoc, const Point2 &startPoint,
bool bVerbose=true)

Create a zone limited by a ConstraintGraph by growing from a start point.

• Zone2 ∗ createZone (std::vector< Triangle2 ∗ > &vTriangles, bool bVerbose=true)

Create a zone defined by a vector of triangles.

• Zone2 ∗ createZone_cookieCutter (std::vector< Segment2 > &vSegments, bool bProtectEdges)

Cookie Cutter The Cookie Cutter cuts out a part of a triangulation and returns it as a Zone2 object.

• void cutTriangles (const Point2 &knifeStart, const Point2 &knifeEnd, bool bTurnEdgesIntoConstraints)

Cut through a triangulation.

Generated by Doxygen

6.7 GEOM_FADE2D::Fade_2D Class Reference 45

• void cutTriangles (std::vector< Segment2 > &vSegments, bool bTurnEdgesIntoConstraints)

Cut through a triangulation.

• void deleteZone (Zone2 ∗pZone)

Delete a Zone2 object.

• bool drape (std::vector< Segment2 > &vSegmentsIn, std::vector< Segment2 > &vSegmentsOut) const

Drape segments along a surface.

• void enableMultithreading ()

Enable multithreading (deprecated)

• void exportTriangulation (FadeExport &fadeExport, bool bWithCustomIndices, bool bClear)

Export triangulation data from Fade.

• Triangle2 ∗ getAdjacentTriangle (Point2 ∗p0, Point2 ∗p1) const

Get adjacent triangle.

• void getAliveAndDeadConstraintSegments (std::vector< ConstraintSegment2 ∗ > &vAllConstraint←↩

Segments) const

Get all (alive and dead) constraint segments.

• void getAliveConstraintSegments (std::vector< ConstraintSegment2 ∗> &vAliveConstraintSegments) const

Get active (alive) constraint segments.

• ConstraintSegment2 ∗ getConstraintSegment (Point2 ∗p0, Point2 ∗p1) const

Retrieve a ConstraintSegment2.

• void getConvexHull (bool bAllVertices, std::vector< Point2 ∗ > &vConvexHullPointsOut)

Compute the convex hull.

• void getIncidentTriangles (Point2 ∗pVtx, std::vector< Triangle2 ∗ > &vIncidentT) const

Get incident triangles.

• void getIncidentVertices (Point2 ∗pVtx, std::vector< Point2 ∗ > &vIncidentVertices) const

Get incident vertices.

• Orientation2 getOrientation (const Point2 &p0, const Point2 &p1, const Point2 &p2)

Compute the orientation of 3 points.

• void getTrianglePointers (std::vector< Triangle2 ∗ > &vAllTriangles) const

Get pointers to all triangles.

• void getVertexPointers (std::vector< Point2 ∗ > &vAllPoints) const

Get pointers to all vertices.

• bool hasArea () const

Check if the triangulation contains triangles (which is the case if at least 3 non-collinear points exist in the triangulation.

• Zone2 ∗ importTriangles (std::vector< Point2 > &vPoints, bool bReorientIfNeeded, bool bCreateExtended←↩

BoundingBox)

Import triangles.

• Point2 ∗ insert (const Point2 &p)

Insert a single point.

• void insert (const std::vector< Point2 > &vInputPoints)

Insert a vector of points.

• void insert (const std::vector< Point2 > &vInputPoints, std::vector< Point2 ∗ > &vHandles)

Insert points from a std::vector and store pointers in vHandles.

• void insert (int numPoints, double ∗aCoordinates, Point2 ∗∗aHandles)

Insert points from an array.

• bool isConstraint (Point2 ∗p0, Point2 ∗p1) const

Check if an edge is a constraint edge.

• bool isConstraint (Point2 ∗pVtx) const

Check if a vertex is a constraint vertex.

• bool isConstraint (Triangle2 ∗pT, int ith) const

Check if an edge is a constraint edge.

• bool load (const char ∗filename, std::vector< Zone2 ∗ > &vZones)

Generated by Doxygen

46

Load a triangulation together with any custom indices, constraint-edges and zones from a binary file.

• Triangle2 ∗ locate (const Point2 &p)

Locate a triangle which contains p.

• double measureTriangulationTime (std::vector< Point2 > &vPoints)

Measure the Delaunay triangulation time.

• size_t numberOfPoints () const

Number of points.

• size_t numberOfTriangles () const

Number of triangles.

• void printLicense () const

Prints license information.

• void refine (Zone2 ∗pZone, double minAngleDegree, double minEdgeLength, double maxEdgeLength, bool
bAllowConstraintSplitting)

Delaunay refinement.

• void refineAdvanced (MeshGenParams ∗pParameters)

Delaunay refinement and grid meshing.

• void remove (Point2 ∗pVertex)

Remove a single vertex.

• bool saveTriangulation (const char ∗filename, std::vector< Zone2 ∗ > &vSaveZones)

Save a triangulation.

• bool saveZones (const char ∗filename, std::vector< Zone2 ∗ > &vSaveZones)

Save zones.

• void setFastMode (bool bFast)

Set fast mode.

• int setNumCPU (int numCPU)

Set the number CPU cores for multithreading.

• void show (const char ∗postscriptFilename, bool bWithConstraints=true) const

Draws the triangulation as postscript file.

• void show (Visualizer2 ∗pVis, bool bWithConstraints=true) const

Draws the triangulation as postscript file using an existing Visualizer2 object.

• void statistics (const char ∗s) const

Statistics.

• void subscribe (MsgType msgType, MsgBase ∗pMsg)

Register a message receiver.

• void unsubscribe (MsgType msgType, MsgBase ∗pMsg)

Unregister a message receiver.

• void writeObj (const char ∗filename) const

Write the current triangulation to an ∗.obj file.

• void writeObj (const char ∗filename, Zone2 ∗pZone) const

Write a zone to an ∗.obj file.

• void writeWebScene (const char ∗path) const

Write the current triangulation to an ∗.obj file.

• void writeWebScene (const char ∗path, Zone2 ∗pZone) const

Write a zone to an ∗.obj file.

6.7.1 Detailed Description

Fade_2D represents a Delaunay triangulation in 2D or 2.5D (depends on the used namespace)

6.7.2 Constructor & Destructor Documentation

Generated by Doxygen

6.7 GEOM_FADE2D::Fade_2D Class Reference 47

6.7.2.1 Fade_2D() GEOM_FADE2D::Fade_2D::Fade_2D (

unsigned numExpectedVertices = 3) [inline], [explicit]

Generated by Doxygen

48

Parameters

numExpectedVertices specifies the number of points that will be inserted. This is a default parameter that
does not need to be specified.

6.7.3 Member Function Documentation

6.7.3.1 applyConstraintsAndZones() void GEOM_FADE2D::Fade_2D::applyConstraintsAndZones ()

This method establishes conforming constraint segments and zones which depend on them. For technical reasons
conforming constraint segments are not immediately established but inserted at the end of the triangulation process.
This step must be triggered manually i.e., it is up to the user to call applyConstraintsAndZones() before the resulting
triangulation is used. If afterwards the triangulation is changed in any way, applyConstraintsAndZones() must be
called again.

Note

The present function applyConstraintsAndZones() as well as the two constraint insertion strategies CIS_CO←↩

NFORMING_DELAUNAY and CIS_CONFORMING_DELAUNAY_SEGMENT_LEVEL are deprecated. These
are only kept for backwards compatibilty. The replacement is CIS_CONSTRAINED_DELAUNAY along with the
methods Fade_2D::drape() and/or ConstraintGraph2::makeDelaunay(). See the example code in examples←↩

_25D/terrain.cpp

6.7.3.2 checkValidity() bool GEOM_FADE2D::Fade_2D::checkValidity (

bool bCheckEmptyCircleProperty,

const char ∗ msg) const

Checks the validity of the data structure.

Parameters

bCheckEmptyCircleProperty specifies if (slow!) multiprecision arithmetic shall be used to recheck the empty
circle property

msg is a debug string that will be shown in terminal output so that you know which
checkValidity call currently runs.

This method is thought for development purposes. Don't call it method unless you assume that something is wrong
with the code.

6.7.3.3 computeBoundingBox() Bbox2 GEOM_FADE2D::Fade_2D::computeBoundingBox () const

If no points have been inserted yet, then the returned Bbox2 object is invalid and its member function Bbox2::isValid()
returns false.

6.7.3.4 createConstraint() ConstraintGraph2∗ GEOM_FADE2D::Fade_2D::createConstraint (

std::vector< Segment2 > & vSegments,

ConstraintInsertionStrategy cis,

bool bOrientedSegments = false)

Parameters

vSegments are segments which shall appear as edges of the triangulation. The segments may be
automatically reordered and reoriented, see bOrientedSegments below.

Generated by Doxygen

6.7 GEOM_FADE2D::Fade_2D Class Reference 49

Parameters

cis is the Constraint-Insertion-Strategy. Use always CIS_CONSTRAINED_DELAUNAY.
This mode inserts the constraint segments without subdivision unless existing vertices
or existing constraint segments are crossed. When subdivision (e.g., to achieve better
triangle shapes) is desired then use ConstraintGraph2::makeDelaunay() after insertion.

bOrientedSegments specifies whether the segments in vSegments are oriented (oriented, not ordered!). To
maintain backwards compatibility bOrientedSegments is a default parameter and it
defaults to false. Fade will maintain the orientation of the segments only when
bOrientedSegments=true. This regards functions like
ConstraintGraph2::getPolygonVertices() when the order of the returned vertices is
important. Another consequence is when later a Zone2 object shall be constructed from
this ConstraintGraph2. This is only possible if either this value is true (then the algorithm
will assume that all segments exist in counterclockwise orientation) or when the value is
false and the segments can be automatically reoriented and reordered such that they
form one closed polygon.

Returns

a pointer to the new ConstraintGraph2 object

Figure 7 Delaunay triangulation without constraints

Figure 8 Constraint Delaunay triangulation

Figure 9 Conforming Delaunay triangulation through the ConstraintGraph::makeDelaunay() method

Generated by Doxygen

50

6.7.3.5 createZone() [1/4] Zone2∗ GEOM_FADE2D::Fade_2D::createZone (

const std::vector< ConstraintGraph2 ∗ > & vConstraintGraphs,

ZoneLocation zoneLoc,

const Point2 & startPoint,

bool bVerbose = true)

A Zone2 object is an area of the traingulation, see createZone

Parameters

vConstraintGraphs is a vector of ConstraintGraph objects

zoneLoc must be ZL_GROW
startPoint is the point from which the area is grown until the borders specified in vConstraintGraphs

are reached
bVerbose is by default true and causes a warning if NULL is returned.

Returns

a pointer to the new Zone2 object (or NULL if zoneLoc!=ZL_GROW or no triangles exist)

6.7.3.6 createZone() [2/4] Zone2∗ GEOM_FADE2D::Fade_2D::createZone (

ConstraintGraph2 ∗ pConstraintGraph,

ZoneLocation zoneLoc,

bool bVerbose = true)

A Zone2 object is an area of a triangulation, possibly bounded by a ConstraintGraph.

Parameters

zoneLoc is ZL_INSIDE, ZL_OUTSIDE or ZL_GLOBAL.

pConstraintGraph points to a formerly created ConstraintGraph2 object (which must be oriented and contain
a simple polygon) or is NULL in case of zoneLoc==ZL_GLOBAL.

bVerbose is by default true and causes a warning if NULL is returned.

Returns

a pointer to the new Zone2 object or NULL if no triangles exist or pConstraintGraph->isOriented() returns
false.

Figure 10 Zones in a triangulation

Generated by Doxygen

6.7 GEOM_FADE2D::Fade_2D Class Reference 51

6.7.3.7 createZone() [3/4] Zone2∗ GEOM_FADE2D::Fade_2D::createZone (

ConstraintGraph2 ∗ pConstraintGraph,

ZoneLocation zoneLoc,

const Point2 & startPoint,

bool bVerbose = true)

A Zone2 object is an area of the traingulation, see createZone

Parameters

pConstraintGraph is a constraint whose edges specify the area's border

zoneLoc must be ZL_GROW
startPoint is the point from which the area is grown until the borders specified in pConstraint are

reached
bVerbose is by default true and causes a warning if NULL is returned.

Returns

a pointer to the new Zone2 object (or NULL if zoneLoc!=ZL_GROW or no triangles exist)

6.7.3.8 createZone() [4/4] Zone2∗ GEOM_FADE2D::Fade_2D::createZone (

std::vector< Triangle2 ∗ > & vTriangles,

bool bVerbose = true)

A Zone2 object is an area of the traingulation, see createZone

Parameters

vTriangles

bVerbose is by default true and causes a warning if NULL is returned.

Returns

a pointer to the new Zone2 object (or NULL if vTriangles is empty)

6.7.3.9 createZone_cookieCutter() Zone2∗ GEOM_FADE2D::Fade_2D::createZone_cookieCutter (

std::vector< Segment2 > & vSegments,

bool bProtectEdges)

Parameters

in vSegments specifies a simple polygon.

in bProtectEdges specifies if existing triangles shall be protected with constraint segments.

Returns

a Zone2 object consisting of all triangles inside the polygon or NULL when the operation has failed due to
wrong preconditions.

Properties: The input polygon (vSegments) does not need to have certain height values, the z-coordinates
are computed automatically. The input polygon is automatically trimmed when it is outside the convex hull of the
triangulation. Insertion of intersection points may flip existing edges in the triangulation but this can be avoided
using bProtectEdges=true. In this case new constraint edges may be created.

6.7.3.10 cutTriangles() [1/2] void GEOM_FADE2D::Fade_2D::cutTriangles (

Generated by Doxygen

52

const Point2 & knifeStart,

const Point2 & knifeEnd,

bool bTurnEdgesIntoConstraints)

Parameters

knifeStart is one point of the knife segment

knifeEnd is the second point of the knife segment

bTurnEdgesIntoConstraints turns all 3 edges of each intersected triangle into constraint segments.

This method inserts a constraint edge knife(knifeStart,knifeEnd). If existing edges E are intersected by knife, then
knife is subdivided at the intersection points P.
In any case knife will exist (in a possibly subdivided form) in the result. But a consequence of the insertion of the
points P is that the edges E and even edges which are not intersected by knife may be flipped. Use bTurnEdges←↩

IntoConstraints=true to avoid that.

Note

The intersection point of two line segments may not be exactly representable in double precision floating point
arithmetic and thus tiny rounding errors may occur. As a consequence two very close intersection points may
be rounded to the same coordinates.

When more than one knife segment is inserted then the method void cutTriangles(std::vector<Segment2>& vSegments,bool bTurnEdgesIntoConstraints)
should be used. The reason is that each individual cut operation changes the triangulation and thus iterative
calls to the present version of the method can lead to a different result.

6.7.3.11 cutTriangles() [2/2] void GEOM_FADE2D::Fade_2D::cutTriangles (

std::vector< Segment2 > & vSegments,

bool bTurnEdgesIntoConstraints)

Parameters

vSegments are the knife segments

bTurnEdgesIntoConstraints specifies if intersected edges shall automatically be turned into constraints

Same method as void cutTriangles(const Point2& knifeStart,const Point2& knifeEnd,bool bTurnEdgesIntoConstraints)
but it takes a vector of segments instead of a single segment. This is the recommended method to cut through a
triangulation when more than one knife segment exists.

6.7.3.12 deleteZone() void GEOM_FADE2D::Fade_2D::deleteZone (

Zone2 ∗ pZone)

Zone2 objects are automatically destroyed with their Fade_2D objects. In addition this method provides the possi-
bility to eliminate Zone2 objects earlier.

Note

Zones are designed transparently: When two zones Z1 and Z2 are combined to a new one Z3 (for example
through a boolean operation) then Z1,Z2,Z3 form a tree such that changes in the leaf nodes Z1 and Z2 can
propagate up to the root node Z3. For this reason Z1 and Z2 must be alive as long as Z3 is used.

6.7.3.13 drape() bool GEOM_FADE2D::Fade_2D::drape (

std::vector< Segment2 > & vSegmentsIn,

std::vector< Segment2 > & vSegmentsOut) const

Generated by Doxygen

6.7 GEOM_FADE2D::Fade_2D Class Reference 53

Projects the segments from vSegmentsIn onto the triangulation. Thereby the segments are subdivided where
they intersect edges of the triangulation. Segment parts outside the triangulation are cut off and ignored. Degener-
ate input segments are also ignored.

Parameters

in vSegmentsIn Input segments

out vSegmentsOut Output segments

Returns

TRUE when all input segments are inside the convex hull of the triangulation. Otherwise FALSE is returned
and the result is still valid but it contains only the segment parts inside the convex hull.

Note

The tiny rounding errors that occur when segment intersections are computed are largely theoretical. But be
aware that subdivided segments are not always perfectly collinear. This can't be avoided because the exact
split point is sometimes not even representable using floating point coordinates.

•
Figure 11 Drape: Input segments are draped (red) onto a TIN. They are subdivided (blue) at intersections

with triangulation edges

Note

Draping segments onto a TIN does not insert them. Use Fade_2D::createConstraint() for that purpose.

6.7.3.14 enableMultithreading() void GEOM_FADE2D::Fade_2D::enableMultithreading ()

Deprecated: Use setNumCPU() instead. This method is kept for compatibility with existing applications. Internally it
calls setNumCPU(0) to automatically determine and use the number of available CPU cores.

6.7.3.15 exportTriangulation() void GEOM_FADE2D::Fade_2D::exportTriangulation (

FadeExport & fadeExport,

bool bWithCustomIndices,

bool bClear)

Parameters

fadeExport is a struct that will hold the requested triangulation data

bWithCustomIndices determines whether the custom indices of the points are also stored

bClear determines whether the Fade instance is cleared during the export operation to save
memory

Generated by Doxygen

54

Note

When bClear is true then all memory of the Fade object is deleted i.e., all existing pointers to its objects
become invalid.

6.7.3.16 getAdjacentTriangle() Triangle2∗ GEOM_FADE2D::Fade_2D::getAdjacentTriangle (

Point2 ∗ p0,

Point2 ∗ p1) const

Returns

the triangle that has the edge (p0,p1) or NULL if no such edge is present

Note

Recall the counter-clockwise enumeration of vertices in a triangle. If (p0,p1) is used, the unique triangle with
the CCW oriented edge (p0,p1) is returned, using (p1,p0) one gets the other adjacent triangle.

6.7.3.17 getConstraintSegment() ConstraintSegment2∗ GEOM_FADE2D::Fade_2D::getConstraintSegment

(

Point2 ∗ p0,

Point2 ∗ p1) const

Returns

a pointer to the ConstraintSegment2 between p0 and p1 or NULL if the segment is not a constraint edge (or
dead because it has been splitted)

6.7.3.18 getConvexHull() void GEOM_FADE2D::Fade_2D::getConvexHull (

bool bAllVertices,

std::vector< Point2 ∗ > & vConvexHullPointsOut)

Parameters

bAllVertices determines if all convex hull points are returned or if collinear ones shall be
removed.

out vConvexHullPointsOut is used to return the convex hull vertices in counterclockwise order. The start
vertex is the leftmost vertex. If more than one leftmost vertex exists, the
bottommost of them is the start vertex.

6.7.3.19 getIncidentTriangles() void GEOM_FADE2D::Fade_2D::getIncidentTriangles (

Point2 ∗ pVtx,

std::vector< Triangle2 ∗ > & vIncidentT) const

Stores pointers to all triangles around pVtx into vIncidentT

6.7.3.20 getIncidentVertices() void GEOM_FADE2D::Fade_2D::getIncidentVertices (

Point2 ∗ pVtx,

std::vector< Point2 ∗ > & vIncidentVertices) const

Stores pointers to all vertices around pVtx into vIncidentVertices

6.7.3.21 getOrientation() Orientation2 GEOM_FADE2D::Fade_2D::getOrientation (

const Point2 & p0,

Generated by Doxygen

6.7 GEOM_FADE2D::Fade_2D Class Reference 55

const Point2 & p1,

const Point2 & p2)

Returns

ORIENTATION2_COLLINEAR, ORIENTATION2_CW (clockwise) or ORENTATION2_CCW (counterclock-
wise)

6.7.3.22 getTrianglePointers() void GEOM_FADE2D::Fade_2D::getTrianglePointers (

std::vector< Triangle2 ∗ > & vAllTriangles) const

This command fetches the existing triangles

Parameters

out vAllTriangles is used to return the triangles

Note

that the lifetime of data from the Fade2D datastructures does exceed the lifetime of the Fade2D object.

6.7.3.23 getVertexPointers() void GEOM_FADE2D::Fade_2D::getVertexPointers (

std::vector< Point2 ∗ > & vAllPoints) const

Parameters

vAllPoints is an empty vector of Point2 pointers.

Stores pointers to all vertices of the triangulation in vAllPoints. The order in which the points are stored is not
necessarily the insertion order. For geometrically identical points which have been inserted multiple times, only one
pointer exists. Thus vAllPoints.size() can be smaller than the number of inserted points.

Note

that the lifetime of data from the Fade2D datastructures does exceed the lifetime of the Fade2D object.

6.7.3.24 hasArea() bool GEOM_FADE2D::Fade_2D::hasArea () const

As long as all inserted points are collinear the triangulation does not contain triangles. This is clearly the case
as long as less than three input points are present but it may also be the case when 3 or more points have been
inserted when all these points are collinear. These points are then in a pending state, i.e. they will be triangulated
as soon as the first non-collinear point is inserted.

Figure 12 Triangles are generated as soon as the first non-collinear point is inserted.

Generated by Doxygen

56

Returns

true if at least one triangle exists
false otherwise

6.7.3.25 importTriangles() Zone2∗ GEOM_FADE2D::Fade_2D::importTriangles (

std::vector< Point2 > & vPoints,

bool bReorientIfNeeded,

bool bCreateExtendedBoundingBox)

This method imports triangles into an empty Fade object. The triangles do not need to satisfy the empty circle
property.

Parameters

vPoints contains the input vertices (3 subsequent ones per triangle)

bReorientIfNeeded specifies if the orientations of the point triples shall be checked and
corrected. If the point triples are certainly oriented in counterclockwise order
then the orientation test can be skipped.

bCreateExtendedBoundingBox can be used to insert 4 dummy points of an extended bounding box. This is
convenient in some cases. Use false if you are unsure.

Returns

a pointer to a Zone2 object or NULL if the input data is invalid

Warning

This method requires 100% correct input. A frequent source of trouble is when client software reads points
from an ASCII file. The ASCII format is convenient but it can introduce rounding errors that cause inter-
sections and flipped triangle orientations. Thus it is highly recommended to transfer point coordinates with
binary files. See also readPointsBIN() and writePointsBIN().

6.7.3.26 insert() [1/4] Point2∗ GEOM_FADE2D::Fade_2D::insert (

const Point2 & p)

Parameters

p is the point to be inserted.

Returns

a pointer to the point in the triangulation

The triangulation keeps a copy of p. The return value is a pointer to this copy. If duplicate points are inserted, the
triangulation does not create new copies but returns a pointer to the copy of the very first insertion.

Note

This method offers a very good performance but it is still faster if all points are passed at once, if possible.

6.7.3.27 insert() [2/4] void GEOM_FADE2D::Fade_2D::insert (

const std::vector< Point2 > & vInputPoints)

Generated by Doxygen

6.7 GEOM_FADE2D::Fade_2D Class Reference 57

Parameters

vInputPoints contains the points to be inserted.

Note

Use Fade_2D::setNumCPU() to activate multithreading

6.7.3.28 insert() [3/4] void GEOM_FADE2D::Fade_2D::insert (

const std::vector< Point2 > & vInputPoints,

std::vector< Point2 ∗ > & vHandles)

Parameters

vInputPoints contains the points to be inserted.

vHandles (empty) is used by Fade to return Point2 pointers

Internally, the triangulation keeps copies of the inserted points which are returned in vHandles (in the same order).
If duplicate points are contained in vInputPoints then only one copy will be made and a pointer to this unique copy
will be stored in vHandles for every occurance.

Note

Use Fade_2D::setNumCPU() to activate multithreading

6.7.3.29 insert() [4/4] void GEOM_FADE2D::Fade_2D::insert (

int numPoints,

double ∗ aCoordinates,

Point2 ∗∗ aHandles)

Parameters

numPoints is the number of points to be inserted

aCoordinates is an array of 2n double values, e.g. {x0,y0,x1,y1,...,xn,yn}

aHandles is an empty array with size n where pointers to the inserted points will be stored by Fade

Note

Use Fade_2D::setNumCPU() to activate multithreading

6.7.3.30 isConstraint() [1/3] bool GEOM_FADE2D::Fade_2D::isConstraint (

Point2 ∗ p0,

Point2 ∗ p1) const

Returns whether the edge (p0,p1) is a constraint edge.

6.7.3.31 isConstraint() [2/3] bool GEOM_FADE2D::Fade_2D::isConstraint (

Point2 ∗ pVtx) const

Returns whether the vertex pVtx belongs to a constraint edge.

6.7.3.32 isConstraint() [3/3] bool GEOM_FADE2D::Fade_2D::isConstraint (

Triangle2 ∗ pT,

int ith) const

Generated by Doxygen

58

Returns whether the edge in triangle pT which is opposite to the ith vertex is a constraint edge.

6.7.3.33 load() bool GEOM_FADE2D::Fade_2D::load (

const char ∗ filename,

std::vector< Zone2 ∗ > & vZones)

Parameters

in filename is the name of the input file

out vZones is used to return Zone2∗ pointers if any. The order of the pointers is the same as at the
time of storage

Returns

whether the operation was successfull

6.7.3.34 locate() Triangle2∗ GEOM_FADE2D::Fade_2D::locate (

const Point2 & p)

Figure 13 Point location

The Fade_2D class can be used as a data structure for point location. This method returns a pointer to a triangle
which contains p.

Parameters

p is the query point

Returns

a pointer to a Triangle2 object (or NULL if hasArea()==false or if p is outside the triangulation)

6.7.3.35 measureTriangulationTime() double GEOM_FADE2D::Fade_2D::measureTriangulationTime (

std::vector< Point2 > & vPoints)

This method evaluates the performance of single- and multithreaded point insertion into a Delaunay triangulation.

Parameters

in vPoints are the points to be inserted

Generated by Doxygen

6.7 GEOM_FADE2D::Fade_2D Class Reference 59

Returns

the total wall-time for point insertion in seconds

Note

The method cleans up the triangulation (objects, memory) on exit. Thus the time measured outside this
method may be slightly larger than the returned time that is exactly the time needed to triangulate the input
points.

Use Fade_2D::setNumCPU() to activate multithreading

6.7.3.36 numberOfPoints() size_t GEOM_FADE2D::Fade_2D::numberOfPoints () const

Returns

the number of points in the triangulation

Note

Due to possibly duplicate input points the number of points is not stored somewhere but freshly computed in
O(n) time. This is fast but you are adviced to avoid calling this method over-frequently in a loop. Duplicate
point insertions count only once.

6.7.3.37 numberOfTriangles() size_t GEOM_FADE2D::Fade_2D::numberOfTriangles () const

Returns

the number of triangles in the triangulation (or 0 as long as hasArea() is false).

6.7.3.38 refine() void GEOM_FADE2D::Fade_2D::refine (

Zone2 ∗ pZone,

double minAngleDegree,

double minEdgeLength,

double maxEdgeLength,

bool bAllowConstraintSplitting)

Creates a mesh inside the area given by a Zone2 object.

Parameters

pZone is the zone whose triangles are refined. Allowed zoneLocation values are
ZL_INSIDE and ZL_BOUNDED.

minAngleDegree (up to 30) is the minimum interior triangle angle

minEdgeLength is a lower threshold on the edge length. Triangles with smaller edges are not
refined.

maxEdgeLength is an upper threshold on the edge length. Triangles with larger edges are always
refined.

bAllowConstraintSplitting specifies if constraint edges may be splitted

Note

The behavior of the present method had to be changed in Fade v1.39: Only ZL_INSIDE and ZL_BO←↩

UNDED zones are accepted. But you can easily convert other types of zones to ZL_BOUNDED using
Zone2::convertToBoundedZone().

Generated by Doxygen

60

6.7.3.39 refineAdvanced() void GEOM_FADE2D::Fade_2D::refineAdvanced (

MeshGenParams ∗ pParameters)

This method calls an advanced Delaunay mesh generator and grid mesher. The parameters are encapsulated in
the MeshGenParams class. This class provides default parameters that can be used as is. Alternatively client code
can derive from MeshGenParams and overwrite the methods and parameters to gain full control over the mesh
generation process.

6.7.3.40 remove() void GEOM_FADE2D::Fade_2D::remove (

Point2 ∗ pVertex)

Parameters

pVertex shall be removed.

Note

pVertex must not be a vertex of a ConstraintGraph2 or ConstraintSegment2 object. If this is the case, the
vertex is not removed and a warning is issued.

6.7.3.41 saveTriangulation() bool GEOM_FADE2D::Fade_2D::saveTriangulation (

const char ∗ filename,

std::vector< Zone2 ∗ > & vSaveZones)

The saveTriangulation() command saves all triangles of the present triangulation to a binary file. Thereby it retains
constraint edges and custom vertex indices, if any. If Zone2∗ pointers are specified, these zones will be saved also
and their order will be retained.

Parameters

in filename is the name of the input file

out vSaveZones is used specify zones that shall additionally be saved

See also

If you just want to store zones, use Zone2::save() or Fade_2D::saveTriangulation(). Use Fade_2D::load() to
reload data from such files.

Returns

whether the operation was successfull

6.7.3.42 saveZones() bool GEOM_FADE2D::Fade_2D::saveZones (

const char ∗ filename,

std::vector< Zone2 ∗ > & vSaveZones)

The saveZones() command saves the triangles of the zones in vSaveZones to a binary file. Thereby it keeps the
order of the zones and it retains any constraint edges and custom indices in the domain.

Note

A Delaunay triangulation is convex without holes and this may not hold for the zones to be saved. Thus extra
triangles may be saved to fill concavities. These extra-triangles will belong to the Fade_2D instance but not to
any Zone2 when reloaded later.

Generated by Doxygen

6.7 GEOM_FADE2D::Fade_2D Class Reference 61

Parameters

in filename is the name of the input file

out vSaveZones (non-empty) specifies the zones to be saved

Returns

whether the operation was successfull

See also

The saveTriangulation() command can be used to store all triangles of a triangulation plus any specified zones.
The Zone2::save() command is used to store just one zone. Use Fade_2D::load() to reload data from such
files.

6.7.3.43 setFastMode() void GEOM_FADE2D::Fade_2D::setFastMode (

bool bFast)

By default, numerically perfect calculations are performed to compute a 100% perfect Delaunay triangulation. How-
ever, the difference is hardly noticeable and only relevant in scientific applications, while practical applications may
want to skip the computationally expensive calculations.
Depending on the position of the input points, the effect of the FastMode is between zero and a quite considerable
acceleration.

Parameters

bFast is true when exact tests shall be avoided in favor of better performance.

6.7.3.44 setNumCPU() int GEOM_FADE2D::Fade_2D::setNumCPU (

int numCPU)

Parameters

numCPU is the number of CPU cores to be used. The special value numCPU=0 means: auto-detect and
use the number of available CPU cores.

Returns

the number of CPU cores that will be used (useful in case of auto-detection)

Characteristics:

• This setting affects Fade_2D::measureTriangulationTime() and Fade_2D::insert() which is by default single-
threaded to avoid undeliberate nested multithreading (an application may run Fade in a thread).

• For technical reasons points should be inserted before any constraint segments so that the algorithm can
fully benefit from multithreading.

• Fade continues support for very old compilers but multithreading is not available for VS2010 and CentOS6.4
library versions.

6.7.3.45 show() [1/2] void GEOM_FADE2D::Fade_2D::show (

const char ∗ postscriptFilename,

bool bWithConstraints = true) const

Generated by Doxygen

62

show() is a convenience function for quick outputs with a default look. It is also possible to use the Visualizer2 class
directly to draw arbitrary circles, line segments, vertices and labels with custom colors.

Parameters

postscriptFilename is the output name, i.e. "myFile.ps"

bWithConstraints specifies if constraint segments shall be shown (default: true)

6.7.3.46 show() [2/2] void GEOM_FADE2D::Fade_2D::show (

Visualizer2 ∗ pVis,

bool bWithConstraints = true) const

This overload of the show() method allows to add further geometric primitives to the Visualizer2 object before it is
finally written.

Parameters

pVis is the pointer of a Visualizer2 object that may already contain geometric primitives or that
may later be used to draw further elements

bWithConstraints specifies if constraint segments shall be shown (default: true)

Note

The postscript file must be finalized with Visualizer2::writeFile().

6.7.3.47 statistics() void GEOM_FADE2D::Fade_2D::statistics (

const char ∗ s) const

Prints mesh statistics to stdout.

6.7.3.48 subscribe() void GEOM_FADE2D::Fade_2D::subscribe (

MsgType msgType,

MsgBase ∗ pMsg)

Parameters

msgType is the type of message the subscriber shall receive, e.g. MSG_PROGRESS or MSG_WARNING

pMsg is a pointer to a custom class derived from MsgBase

6.7.3.49 unsubscribe() void GEOM_FADE2D::Fade_2D::unsubscribe (

MsgType msgType,

MsgBase ∗ pMsg)

Parameters

msgType is the type of message the subscriber shall not receive anymore

pMsg is a pointer to a custom class derived from MsgBase

6.7.3.50 writeObj() [1/2] void GEOM_FADE2D::Fade_2D::writeObj (

Generated by Doxygen

6.8 GEOM_FADE2D::FadeExport Struct Reference 63

const char ∗ filename) const

Visualizes the current triangulation. The ∗.obj format represents a 3D scene.

6.7.3.51 writeObj() [2/2] void GEOM_FADE2D::Fade_2D::writeObj (

const char ∗ filename,

Zone2 ∗ pZone) const

Visualizes a certain Zone2 object of the present triangulation. The ∗.obj format represents a 3D scene.

6.7.3.52 writeWebScene() [1/2] void GEOM_FADE2D::Fade_2D::writeWebScene (

const char ∗ path) const

Made for terrain visualizations in 2.5D but will work also for 2D.

6.7.3.53 writeWebScene() [2/2] void GEOM_FADE2D::Fade_2D::writeWebScene (

const char ∗ path,

Zone2 ∗ pZone) const

Made for terrain visualizations in 2.5D but will work also for 2D.
The documentation for this class was generated from the following file:

• Fade_2D.h

6.8 GEOM_FADE2D::FadeExport Struct Reference

FadeExport is a simple struct to export triangulation data.
#include <FadeExport.h>

Public Member Functions

• void extractTriangleNeighborships (std::vector< std::pair< int, int > > &vNeigs) const

Determine index-pairs of adjacent triangles.

• void getCoordinates (int vtxIdx, double &x, double &y) const

Get the coorinates for a certain vertex index.

• void getCornerIndices (int triIdx, int &vtxIdx0, int &vtxIdx1, int &vtxIdx2) const

Get the corner indices of a certain triangle.

• void print () const

Print data for demonstration purposes.

• bool writeObj (const char ∗filename) const

Write an ∗.obj file (supported by virtually any 3D viewer)

Public Attributes

• double ∗ aCoords

Cartesian coordinates (dim∗numPoints)

• int ∗ aCustomIndices

Custom indices of the points (only when exported)

• int ∗ aTriangles

3 counterclockwise oriented vertex-indices per triangle (3∗numTriangles)

• int dim

Dimension.

• int numCustomIndices

number of custom indices (same as numPoints when exported, otherwise 0)

• int numPoints

number of points

• int numTriangles

number of triangles

Generated by Doxygen

64

6.8.1 Detailed Description

This data structure is there to get data out of Fade easily and memory efficiently. The source code of this class is
deliberately included in the header file so that users can take over the code to their individual project.
Have a look at the Examples.

6.8.2 Member Function Documentation

6.8.2.1 getCoordinates() void GEOM_FADE2D::FadeExport::getCoordinates (

int vtxIdx,

double & x,

double & y) const [inline]

Parameters

vtxIdx [in] vertex index

x,y [out] coordinates

6.8.2.2 getCornerIndices() void GEOM_FADE2D::FadeExport::getCornerIndices (

int triIdx,

int & vtxIdx0,

int & vtxIdx1,

int & vtxIdx2) const [inline]

Parameters

triIdx [in] triangle index

vtxIdx0,vtxIdx1,vtxIdx2 [out] corner indices

The documentation for this struct was generated from the following file:

• FadeExport.h

6.9 GEOM_FADE2D::Func_gtEdge2D Struct Reference

Functor to sort edges by 2d length (descending)
#include <Edge2.h>

Public Member Functions

• bool operator() (const Edge2 &e0, const Edge2 &e1) const

The documentation for this struct was generated from the following file:

• Edge2.h

6.10 GEOM_FADE2D::Func_ltEdge2D Struct Reference

Functor to sort edges by 2d length (ascending)
#include <Edge2.h>

Public Member Functions

• bool operator() (const Edge2 &e0, const Edge2 &e1) const

Generated by Doxygen

https://www.geom.at/triangulation-export/

6.12 GEOM_FADE2D::MeshGenParams Class Reference 65

The documentation for this struct was generated from the following file:

• Edge2.h

6.11 GEOM_FADE2D::Label Class Reference

Label is a Text-Label for Visualization.
#include <Label.h>

Public Member Functions

• Label (const Label &other)
• Label (const Point2 &p_, const char ∗s_, bool bWithMark_=true, int fontSize_=8)

Constructs a Text-Label.

• const char ∗ getCS () const
• Label & operator= (const Label &other)

Public Attributes

• bool bWithMark
• int fontSize
• Point2 p
• LDat ∗ pDat

6.11.1 Detailed Description

See also

Visualizer2 where Label objects are used for visualizations

6.11.2 Constructor & Destructor Documentation

6.11.2.1 Label() GEOM_FADE2D::Label::Label (

const Point2 & p_,

const char ∗ s_,

bool bWithMark_ = true,

int fontSize_ = 8)

Parameters

p_ is the point where the label appears

s_ is the text to be shown
bWith←↩

Mark_
switches between text-only and text-with-mark

fontSize_

The documentation for this class was generated from the following file:

• Label.h

6.12 GEOM_FADE2D::MeshGenParams Class Reference

Parameters for the mesh generator.
#include <MeshGenParams.h>

Generated by Doxygen

66

Public Member Functions

• MeshGenParams (Zone2 ∗pZone_)
• void addLockedConstraint (ConstraintSegment2 ∗pConstraintSegment)

Constraint Segments that shall not be splitted.

• virtual double getMaxEdgeLength (Triangle2 ∗pT)

getMaxEdgeLength(Triangle2∗ pT)

• virtual double getMaxTriangleArea (Triangle2 ∗pT)

getMaxTriangleArea(Triangle2∗ pT)

Public Attributes

• bool bAllowConstraintSplitting

bAllowConstraintSplitting

• bool bKeepExistingSteinerPoints

Steiner points from previous refinements.

• double capAspectLimit

capAspectLimit

• int command

Command.

• double gridLength

gridLength

• Vector2 gridVector

gridVector

• double growFactor

growFactor

• double growFactorMinArea

growFactorMinArea

• double maxEdgeLength

Maximum edge length.

• double maxTriangleArea

maxTriangleArea

• double minAngleDegree

Minimum interior triangle angle.

• double minEdgeLength

Minimum edge length.

• Zone2 ∗ pZone

Zone to be meshed.

6.12.1 Detailed Description

This class serves as container for mesh generator parameters. Client code can provide a class which derives from
MeshGenParams and which provides custom implementations of the getMaxTriangleArea(Triangle∗ pT) method or
the getMaxEdgeLength(Triangle∗ pT) method in order to gain control over the local density of the generated mesh.
When the meshing algorithm decides if a certain triangle T must be refined, then it calls these functions.

See also

http://www.geom.at/advanced-mesh-generation/

6.12.2 Member Function Documentation

Generated by Doxygen

http://www.geom.at/advanced-mesh-generation/

6.12 GEOM_FADE2D::MeshGenParams Class Reference 67

6.12.2.1 addLockedConstraint() void GEOM_FADE2D::MeshGenParams::addLockedConstraint (

ConstraintSegment2 ∗ pConstraintSegment)

In case that some ConstraintSegment2 can be splitted and others must not be splitted use bAllow←↩

ConstraintSplitting=true and add the ones that must not be splitted.

6.12.2.2 getMaxEdgeLength() virtual double GEOM_FADE2D::MeshGenParams::getMaxEdgeLength (

Triangle2 ∗ pT) [inline], [virtual]

Parameters

pT is a triangle for which the meshing algorithm checks if it must be refined.

The default implementation of the present class returns the value maxEdgeLength (which is DBL_MAX if not
changed by the user). This method can be overridden by the client software in order to control the local mesh
density.

Figure 14 User Controlled Mesh Density, Edge Length

6.12.2.3 getMaxTriangleArea() virtual double GEOM_FADE2D::MeshGenParams::getMaxTriangleArea (

Triangle2 ∗ pT) [inline], [virtual]

Parameters

pT is a triangle for which the meshing algorithm checks if it must be refined.

The default implementation of the present class returns the value maxTriangleArea (which is the default value D←↩

BL_MAX if not changed by the user). This method can be overridden by the client software in order to control the
local mesh density.

Generated by Doxygen

68

Figure 15 User Controlled Mesh Density, Area

6.12.3 Member Data Documentation

6.12.3.1 bAllowConstraintSplitting bool GEOM_FADE2D::MeshGenParams::bAllowConstraintSplitting

Defines if constraint segments can be splitted. Default: yes

6.12.3.2 bKeepExistingSteinerPoints bool GEOM_FADE2D::MeshGenParams::bKeepExistingSteinerPoints

A previous call to refine() or refineAdvanced() may have created Steiner points. These may be partially or entirely
removed during a later refinement call, even (!) if this later refinement takes place in a different zone. It depends on
your application if this behavior is desired or not. Usually you want to preserve the points, thus the default value of
/p bKeepExistingSteinerPoints is true.

6.12.3.3 capAspectLimit double GEOM_FADE2D::MeshGenParams::capAspectLimit

Limits the quotient edgeLength / height. Default value: 10.0

6.12.3.4 command int GEOM_FADE2D::MeshGenParams::command

A command for development, not for public use. Will vanish soon.

6.12.3.5 gridLength double GEOM_FADE2D::MeshGenParams::gridLength

Set gridLength > 0 to mesh large enough areas with grid points. Border areas and narrow stripes where a grid
does not fit are automatically meshed using classic Delaunay methods. By default gridLength=0 (off).

Generated by Doxygen

6.12 GEOM_FADE2D::MeshGenParams Class Reference 69

Note

The length of the diagonals in the grid is sqrt(2)∗gridLength and the algorithm may automatically adapt the
gridLength a bit such that the grid fits better into the shape.

Figure 16 Grid Meshing axis aligned

6.12.3.6 gridVector Vector2 GEOM_FADE2D::MeshGenParams::gridVector

When grid-meshing is used the grid is aligned to the gridVector. By default gridVector is axis aligned.

Figure 17 Grid Meshing along Vector2(1.0,0.3)

6.12.3.7 growFactor double GEOM_FADE2D::MeshGenParams::growFactor

Limits the growth of adjacent triangles. The mesh is constructed such that for any two adjacent triangles t0 and t1
(where t0 is the larger one) area(t0)/area(t1) < growFactor. Recommendation: growFactor>5.0, Default: grow←↩

Factor=DBL_MAX

Generated by Doxygen

70

6.12.3.8 growFactorMinArea double GEOM_FADE2D::MeshGenParams::growFactorMinArea

The growFactor value is ignored for triangles with a smaller area than growFactorMinArea. This value prevents
generation of hundreds of tiny triangles around one that is unusually small. Default: 0.001

6.12.3.9 maxEdgeLength double GEOM_FADE2D::MeshGenParams::maxEdgeLength

This value is returned by the default implementation of getMaxEdgeLength(Triangle∗ pT). Larger edges are auto-
matically subdivided. If a custom implementation of getMaxEdgeLength(Triangle∗ pT) is provided then this value is
ignored. Default value: DBL_MAX.

6.12.3.10 maxTriangleArea double GEOM_FADE2D::MeshGenParams::maxTriangleArea

This value is returned by the default implementation of getMaxTriangleArea(Triangle∗ pT). Larger triangles are
automatically subdivided. If a custom implementation of getMaxTriangleArea(Triangle∗ pT) is provided then this
value is ignored. Default value: DBL_MAX.

6.12.3.11 minAngleDegree double GEOM_FADE2D::MeshGenParams::minAngleDegree

Minimum interior angle: Default: 20.0, maximum: 30.0

6.12.3.12 minEdgeLength double GEOM_FADE2D::MeshGenParams::minEdgeLength

Edges below the minimum length are not subdivided. This parameter is useful to avoid tiny triangles. Default: 0.001
The documentation for this class was generated from the following file:

• MeshGenParams.h

6.13 GEOM_FADE2D::MsgBase Class Reference

MsgBase, a base class for message subscriber classes.
#include <MsgBase.h>

Public Member Functions

• virtual void update (MsgType msgType, const char ∗s, double d)=0

update

6.13.1 Detailed Description

MsgBase is a base class from which message subscriber classes (for example widgets, progress bars, ...) can be
derived which then receive messages (progress, warnings, ...) from Fade.

See also

http://www.geom.at/progress-bar/

6.13.2 Member Function Documentation

6.13.2.1 update() virtual void GEOM_FADE2D::MsgBase::update (

MsgType msgType,

const char ∗ s,

double d) [pure virtual]

This method must be defined in derived classes. It is automatically called everytime Fade has a message of type
msgType.
The documentation for this class was generated from the following file:

• MsgBase.h

6.14 GEOM_FADE2D::Point2 Class Reference

Point.
#include <Point2.h>

Generated by Doxygen

http://www.geom.at/progress-bar/

6.14 GEOM_FADE2D::Point2 Class Reference 71

Public Member Functions

• Point2 ()

Default constructor.

• Point2 (const double x_, const double y_)

Constructor.

• Point2 (const Point2 &p_)

Copy constructor.

• void change (const double x_, const double y_)
• int getCustomIndex () const

Get the custom index.

• Triangle2 ∗ getIncidentTriangle () const

Get the associated triangle.

• double getMaxAbs () const

Get max(abs(x),abs(y))

• bool operator!= (const Point2 &p) const

Inequality operator.

• Point2 operator+ (const Vector2 &vec) const

Add vector and point.

• Vector2 operator- (const Point2 &other) const

Returns a vector from other to ∗this.

• Point2 operator- (const Vector2 &vec) const

Subtract vector from point.

• bool operator< (const Point2 &p) const

Less than operator.

• Point2 & operator= (const Point2 &other)
• bool operator== (const Point2 &p) const

Equality operator.

• bool operator> (const Point2 &p) const

Greater than operator.

• void set (const double x_, const double y_, int customIndex_)

Set the coordinates and customIndex.

• void set (const Point2 &pnt)

Set the coordiantes.

• void setCustomIndex (int customIndex_)

Set a custom index.

• void setIncidentTriangle (Triangle2 ∗pT)

Associate a triangle with the point.

• double x () const

Get the x-coordinate.

• void xy (double &x_, double &y_) const

Get the x- and y-coordinate.

• double y () const

Get the y-coordinate.

Protected Attributes

• double coordX
• double coordY
• int customIndex
• Triangle2 ∗ pAssociatedTriangle

Generated by Doxygen

72

Friends

• class Dt2
• std::ostream & operator<< (std::ostream &stream, const Point2 &pnt)
• std::istream & operator>> (std::istream &stream, Point2 &pnt)

6.14.1 Detailed Description

This class represents a point in 2D with x- and y-coordinates and an additional pointer to an associated triangle.

6.14.2 Constructor & Destructor Documentation

6.14.2.1 Point2() [1/3] GEOM_FADE2D::Point2::Point2 (

const double x_,

const double y_) [inline]

Parameters

x←↩

_←↩

x-coordinate

y←↩

_←↩

y-coordinate

6.14.2.2 Point2() [2/3] GEOM_FADE2D::Point2::Point2 () [inline]

The coordinates are initialized to -DBL_MAX

6.14.2.3 Point2() [3/3] GEOM_FADE2D::Point2::Point2 (

const Point2 & p_) [inline]

Create a point as a copy of p_. The associated triangle pointer is initialized to NULL

6.14.3 Member Function Documentation

6.14.3.1 getCustomIndex() int GEOM_FADE2D::Point2::getCustomIndex () const [inline]

Returns

the custom index.

Note

The custom index defaults to -1. It is not the index of the point in the triangulation (such an index does not
exist) but an arbitrary value which can be set by the user.

See also

void setCustomIndex(int customIndex_)

A best practices example that deals with indices: http://www.geom.at/runtime/

Generated by Doxygen

http://www.geom.at/runtime/

6.14 GEOM_FADE2D::Point2 Class Reference 73

6.14.3.2 getIncidentTriangle() Triangle2∗ GEOM_FADE2D::Point2::getIncidentTriangle () const

[inline]

Returns

the associated triangle

6.14.3.3 getMaxAbs() double GEOM_FADE2D::Point2::getMaxAbs () const [inline]

6.14.3.4 operator"!=() bool GEOM_FADE2D::Point2::operator!= (

const Point2 & p) const [inline]

Compares the x and y coordinates

Note

Although a point has a z-coordinate in the 2.5D version only x and y a compared by this method

6.14.3.5 operator<() bool GEOM_FADE2D::Point2::operator< (

const Point2 & p) const [inline]

Compares the x and y coordinates

Note

Although a point has a z-coordinate in the 2.5D version only x and y a compared by this method

6.14.3.6 operator==() bool GEOM_FADE2D::Point2::operator== (

const Point2 & p) const [inline]

Compares the x and y coordinates

Note

Although a point has a z-coordinate in the 2.5D version only x and y a compared by this method

6.14.3.7 operator>() bool GEOM_FADE2D::Point2::operator> (

const Point2 & p) const [inline]

Compares the x and y coordinates

Note

Although a point has a z-coordinate in the 2.5D version only x and y a compared by this method

6.14.3.8 set() [1/2] void GEOM_FADE2D::Point2::set (

const double x_,

const double y_,

int customIndex_) [inline]

Internal method

Parameters

x_ x-coordinate
y_ y-coordinate

custom←↩

Index_
Arbitrary index, use -1 if not required

Generated by Doxygen

74

6.14.3.9 set() [2/2] void GEOM_FADE2D::Point2::set (

const Point2 & pnt) [inline]

Parameters

pnt is the point whose coordinates are assigned to the current point

6.14.3.10 setCustomIndex() void GEOM_FADE2D::Point2::setCustomIndex (

int customIndex_) [inline]

An arbitrary index can be assigned to a point. Use getCustomIndex() to retrieve it later.

Note

This method is provided for the users' convenience. It has nothing to do with the internal data structures of
Fade 2D and using this method is optional. By default this index is -1.

See also

int getCustomIndex()

A best practices example that deals with indices: http://www.geom.at/runtime/

6.14.3.11 setIncidentTriangle() void GEOM_FADE2D::Point2::setIncidentTriangle (

Triangle2 ∗ pT) [inline]

Parameters

pT will be associated with the triangle

6.14.3.12 x() double GEOM_FADE2D::Point2::x () const [inline]

Returns

the x-coordinate

6.14.3.13 xy() void GEOM_FADE2D::Point2::xy (

double & x_,

double & y_) const [inline]

Parameters

x←↩

_←↩

x-coordinate

y←↩

_←↩

y-coordinate

Generated by Doxygen

http://www.geom.at/runtime/

6.15 GEOM_FADE2D::Segment2 Class Reference 75

6.14.3.14 y() double GEOM_FADE2D::Point2::y () const [inline]

Returns

the y-coordinate

The documentation for this class was generated from the following file:

• Point2.h

6.15 GEOM_FADE2D::Segment2 Class Reference

Segment.
#include <Segment2.h>

Public Member Functions

• Segment2 ()
• Segment2 (const Point2 &src_, const Point2 &trg_)

Create a Segment2.

• double getSqLen2D () const
• Point2 getSrc () const
• Point2 getTrg () const
• bool operator== (const Segment2 &other) const
• void swapSrcTrg ()

Protected Attributes

• Point2 src
• Point2 trg

Friends

• std::ostream & operator<< (std::ostream &stream, Segment2 seg)

6.15.1 Detailed Description

6.15.2 Constructor & Destructor Documentation

6.15.2.1 Segment2() [1/2] GEOM_FADE2D::Segment2::Segment2 (

const Point2 & src_,

const Point2 & trg_)

Parameters

src←↩

_
First endpoint (source)

trg←↩

_
Second endpoint (target)

6.15.2.2 Segment2() [2/2] GEOM_FADE2D::Segment2::Segment2 ()

Create a Segment2 Default constructor

Generated by Doxygen

76

6.15.3 Member Function Documentation

6.15.3.1 getSqLen2D() double GEOM_FADE2D::Segment2::getSqLen2D () const

Get the squared length

6.15.3.2 getSrc() Point2 GEOM_FADE2D::Segment2::getSrc () const

Get the source point

Returns

the source point

6.15.3.3 getTrg() Point2 GEOM_FADE2D::Segment2::getTrg () const

Get the target point

Returns

the target point

6.15.3.4 operator==() bool GEOM_FADE2D::Segment2::operator== (

const Segment2 & other) const

operator==
Undirected equality operator

6.15.3.5 swapSrcTrg() void GEOM_FADE2D::Segment2::swapSrcTrg ()

Internally swaps the source and target point
The documentation for this class was generated from the following file:

• Segment2.h

6.16 GEOM_FADE2D::SegmentChecker Class Reference

SegmentChecker identifies intersecting line segments.
#include <SegmentChecker.h>

Public Member Functions

• SegmentChecker (const std::vector< Segment2 ∗ > &vSegments_)
• void getIllegalSegments (bool bAlsoEndPointIntersections, std::vector< Segment2 ∗ > &vIllegalSegments←↩

Out) const
• int getIndex (Segment2 ∗pSeg) const
• void getIntersectionPoint (SegmentIntersectionType typ, const Segment2 &seg0, const Segment2 &seg1,

Point2 &ispOut) const
• void getIntersectionSegment (const Segment2 &seg0, const Segment2 &seg1, Segment2 &issOut) const
• SegmentIntersectionType getIntersectionType (const Segment2 ∗pSeg1, const Segment2 ∗pSeg2) const
• const char ∗ getIntersectionTypeString (SegmentIntersectionType sit) const
• void getIntersectors (Segment2 ∗pTestSegment, bool bAlsoEndPointIntersections, std::vector< std::pair<

Segment2 ∗, SegmentIntersectionType > > &vIntersectorsOut) const
• size_t getNumberOfSegments () const
• Segment2 ∗ getSegment (size_t i) const
• void showIllegalSegments (bool bAlsoEndPointIntersections, const char ∗name) const
• void showSegments (const char ∗name) const
• void subscribe (MsgType msgType, MsgBase ∗pMsg)
• void unsubscribe (MsgType msgType, MsgBase ∗pMsg)

Generated by Doxygen

6.16 GEOM_FADE2D::SegmentChecker Class Reference 77

6.16.1 Detailed Description

SegmentChecker takes a bunch of line segments and fully automatically identifies illegal segment intersections.
The intersection points can be computed in 2D and in 2.5D. Further this class offers visualization methods. Due to
the underlying datastructure the search algorithm scales very well to large inputs.

Figure 18 Polylines: Intersecting segments are automatically found

See also

http://www.geom.at/segment-checker/

6.16.2 Constructor & Destructor Documentation

6.16.2.1 SegmentChecker() GEOM_FADE2D::SegmentChecker::SegmentChecker (

const std::vector< Segment2 ∗ > & vSegments_) [explicit]

Internally this constructor prepares a data structure from vSegments that enables efficient spatial searches. The
time complexity is O(n∗log(n)).

Generated by Doxygen

http://www.geom.at/segment-checker/

78

Parameters

v←↩

Segments←↩

_

contains the segments to be checked

6.16.3 Member Function Documentation

6.16.3.1 getIllegalSegments() void GEOM_FADE2D::SegmentChecker::getIllegalSegments (

bool bAlsoEndPointIntersections,

std::vector< Segment2 ∗ > & vIllegalSegmentsOut) const

Get illegal segments
Returns segments which are involved in intersections. Intersections at endpoints are only reported when b←↩

AlsoEndPointIntersections is true. The asymptotic time consumption for the lookup per segment S is
O(log(n)+k) where k is the number of segments that intersect the minimal bounding box of S. Thus, for n segments
the method takes O(n∗(log(n)+k)) time.

Parameters

bAlsoEndPointIntersections specifies if intersections at endpoints shall be detected

out vIllegalSegmentsOut is the output vector

6.16.3.2 getIndex() int GEOM_FADE2D::SegmentChecker::getIndex (

Segment2 ∗ pSeg) const

Returns the index of a segment

Parameters

pSeg is the segment whose index is returned

6.16.3.3 getIntersectionPoint() void GEOM_FADE2D::SegmentChecker::getIntersectionPoint (

SegmentIntersectionType typ,

const Segment2 & seg0,

const Segment2 & seg1,

Point2 & ispOut) const

Compute the intersection point of two segments
Use getIntersectionType() to determine the segment intersection type sit.

Parameters

typ is the intersection type (SIT_POINT or SIT_ENDPOINT for the present method)

seg0,seg1 are the intersecting segments

out ispOut is the output intersection point.

Note

pSeg1 and pSeg2 do not need to be from the set that has been used to initialize the SegmentChecker.

Generated by Doxygen

6.16 GEOM_FADE2D::SegmentChecker Class Reference 79

6.16.3.4 getIntersectionSegment() void GEOM_FADE2D::SegmentChecker::getIntersectionSegment (

const Segment2 & seg0,

const Segment2 & seg1,

Segment2 & issOut) const

Computes the intersection segment of two collinear intersecting segments

Parameters

seg0,seg1 are intersecting segments such that their SegmentIntersectionType is SIT_SEGMENT

out issOut is the computed intersection of seg0 and seg1

Note

pSeg1 and pSeg2 do not need to be from the set that has been used to initialize the present object

6.16.3.5 getIntersectionType() SegmentIntersectionType GEOM_FADE2D::SegmentChecker::getIntersection←↩

Type (

const Segment2 ∗ pSeg1,

const Segment2 ∗ pSeg2) const

Get the intersection type of two segments

Parameters

pSeg1,pSeg2 are the segments to be checked

Returns

SIT_NONE (no intersection),
SIT_SEGMENT (collinear intersection),
SIT_POINT (intersection somewhere between the endpoints) or
SIT_ENDPOINT (endpoint intersection)

Note

pSeg1 and pSeg2 do not need to be from the set that has been used to initialize the present object

6.16.3.6 getIntersectionTypeString() const char∗ GEOM_FADE2D::SegmentChecker::getIntersection←↩

TypeString (

SegmentIntersectionType sit) const

Return the intersection type as a human readable string. This is a convenience function

Parameters

sit is an intersection type to be converted to a string

6.16.3.7 getIntersectors() void GEOM_FADE2D::SegmentChecker::getIntersectors (

Segment2 ∗ pTestSegment,

bool bAlsoEndPointIntersections,

std::vector< std::pair< Segment2 ∗, SegmentIntersectionType > > & vIntersectors←↩

Out) const

Return segments that intersect a certain segment along with their intersection type

Generated by Doxygen

80

Parameters

pTestSegment is the segment to be analyzed

bAlsoEndPointIntersections specifies if intersections of type SIT_ENDPOINT shall also be reported.

out vIntersectorsOut is the output vector. Segments intersecting pTestSegment are
added to vIntersectorsOut along with their intersection type.

Note

When vIntersectorsOut is non-empty, it is not cleared but the intersected segments are added.

The time complexity is O(log(n)+k) where n is the number of segments and k is the number of intersections for
pTestSegment.

6.16.3.8 getNumberOfSegments() size_t GEOM_FADE2D::SegmentChecker::getNumberOfSegments ()

const

Returns the number of segments contained in this SegmentChecker object

6.16.3.9 getSegment() Segment2∗ GEOM_FADE2D::SegmentChecker::getSegment (

size_t i) const

Returns the i-th segment

Parameters

i is the index of the segment to be returned

6.16.3.10 showIllegalSegments() void GEOM_FADE2D::SegmentChecker::showIllegalSegments (

bool bAlsoEndPointIntersections,

const char ∗ name) const

Write a postscript file, highlight illegal segments

Parameters

bAlsoEndPointIntersections specifies if intersections at endpoints are also illegal

name is the output filename

Generated by Doxygen

6.16 GEOM_FADE2D::SegmentChecker Class Reference 81

Figure 19 Visualization of polyline intersections

6.16.3.11 showSegments() void GEOM_FADE2D::SegmentChecker::showSegments (

const char ∗ name) const

Write all segments, with and without intersection, to a postscript file

Parameters

name is the output filename

Generated by Doxygen

82

Figure 20 Line segments written to a postscript file

6.16.3.12 subscribe() void GEOM_FADE2D::SegmentChecker::subscribe (

MsgType msgType,

MsgBase ∗ pMsg)

Register a progress bar object
The SegmentChecker does its job typically in fractions of a second. But inputs may contain a quadratic number of
intersections and such tasks take a while. Therefore a user defined message object (your own progress-bar class)
can be registered in order to get progress updates. This step is optional.

Parameters

msgType is the message type. For progress information the type is always MSG_PROGRESS

pMsg is a user defined progress bar which derives from Fade's MsgBase.

6.16.3.13 unsubscribe() void GEOM_FADE2D::SegmentChecker::unsubscribe (

Generated by Doxygen

6.17 GEOM_FADE2D::Triangle2 Class Reference 83

MsgType msgType,

MsgBase ∗ pMsg)

Unregister a progress bar object

Parameters

msgType is the message type. For progress information the type is always MSG_PROGRESS

pMsg is a user defined class which derives from Fade's MsgBase

The documentation for this class was generated from the following file:

• SegmentChecker.h

6.17 GEOM_FADE2D::Triangle2 Class Reference

Triangle.
#include <Triangle2.h>

Public Member Functions

• Triangle2 ()

Constructor.

• void clearProperties ()

Clear all corners and neighbor pointers.

• double getArea2D () const

Get 2D Area.

• Point2 getBarycenter () const

Get the barycenter of a triangle.

• Point2 ∗ getCorner (const int ith) const

Get the i-th corner of the triangle.

• std::pair< Point2, bool > getDual () const

Get the dual Voronoi vertex.

• double getInteriorAngle2D (int ith) const

Get interior 2D angle.

• int getIntraTriangleIndex (const Point2 ∗p) const

Get the index of p in the triangle.

• int getIntraTriangleIndex (const Point2 ∗p0, const Point2 ∗p1) const

Get the index of (p0,p1)

• int getIntraTriangleIndex (const Triangle2 ∗pTriangle) const

Get the neighbor index of pTriangle.

• int getMaxIndex () const

Get the index of the largest edge.

• double getMaxSqEdgeLen2D () const

Get the maximum squared 2D edge length.

• int getMinIndex () const

Get the index of the smallest edge.

• Triangle2 ∗ getOppositeTriangle (const int ith) const

Get the i-th neighbor triangle.

• double getSquaredEdgeLength2D (int ith) const

∗∗
• bool hasOnEdge (int i, const Point2 &q) const

Has point on edge.

• bool hasVertex (const Point2 &vtx) const

Generated by Doxygen

84

Has vertex.

• bool hasVertex (Point2 ∗pVtx) const

Has vertex.

• void setOppTriangle (const int ith, Triangle2 ∗pTriangle)

Set the i-th neighbor triangle.

• void setProperties (Point2 ∗pI, Point2 ∗pJ, Point2 ∗pK)

Set all corners.

• void setPropertiesAndOppT (Point2 ∗pI, Point2 ∗pJ, Point2 ∗pK, Triangle2 ∗pNeig0, Triangle2 ∗pNeig1,
Triangle2 ∗pNeig2)

Set all corners and neighbor triangles.

• void setVertexPointer (const int ith, Point2 ∗pp)

Set the i-th corner.

Protected Member Functions

• double computeArea (double l0, double l1, double l2) const
• bool getCC_strategy1 (double avgOffX, double avgOffY, Point2 &cc) const
• void getCC_strategy2 (int maxIdx, double avgOffX, double avgOffY, Point2 &cc) const
• void getCommonOffset (double &x, double &y) const
• bool isAccurateCC (int maxIdx, const Point2 &cc) const

Protected Attributes

• Triangle2 ∗ aOppTriangles [3]
• Point2 ∗ aVertexPointer [3]

Friends

• std::ostream & operator<< (std::ostream &stream, const Triangle2 &c)
• void registerTriangles (Triangle2 ∗fromTriangle, int ith, Triangle2 ∗toTriangle, int jth)

6.17.1 Detailed Description

Triangle2 is a triangle in the Fade_2D triangulation. It holds three Point2 pointers to its corners. The corners are
numbered in counterclockwise order. We refer to these indices as intra-triangle-indices.
Each triangle has three neighbors which can be accessed through intra-triangle-indices: The i-th neighbor triangle
of a certain triangle T is the one which shares an edge with T such that this edge does not include the i-th corner of
T.

Figure 21 Indices and neighborships, tb is the 0-th neighbor of ta and ta is the 2nd neighbor of tb.

See also

TriangleAroundVertexIterator to find out how to access all triangles incident to a certain vertex.

6.17.2 Constructor & Destructor Documentation

Generated by Doxygen

6.17 GEOM_FADE2D::Triangle2 Class Reference 85

6.17.2.1 Triangle2() GEOM_FADE2D::Triangle2::Triangle2 () [inline]

6.17.3 Member Function Documentation

6.17.3.1 getArea2D() double GEOM_FADE2D::Triangle2::getArea2D () const

Returns the 2D area of the triangle.
Note: The getArea() method is deprecated and replaced by getArea2D() to keep the names consistent.

6.17.3.2 getBarycenter() Point2 GEOM_FADE2D::Triangle2::getBarycenter () const

Returns

the barycenter of the triangle.

6.17.3.3 getCorner() Point2 ∗ GEOM_FADE2D::Triangle2::getCorner (

const int ith) const [inline]

Returns

a pointer to the i-th corner point of the triangle.

Figure 22 Intra triangle indices are ordered counterclockwise

Parameters

ith is the intra-triangle-index, ith={0,1,2}.

6.17.3.4 getDual() std::pair<Point2,bool> GEOM_FADE2D::Triangle2::getDual () const

Returns

a std::pair<Point2,bool>, where the first component is the dual Voronoi vertex (circumcenter) of the triangle
and the second component is a boolean value which is true if the vertex is accurate.

Note

The true dual Voronoi vertex of an almost collinear Delaunay triangle can be outside the bounds of floating
point arithmetic. In such cases this method returns a point with very large coordinates but still inside the range
of double precision floating point arithmetic, and it will inform the user by setting the boolean return value to
false.

Such cases can easily be avoided by insertion of four dummy vertices around the triangulation, e.g., at coordi-
nates ten times larger than the domain of the data points. This will automatically restrict the Voronoi diagram
of the data points to this range.

Generated by Doxygen

86

6.17.3.5 getInteriorAngle2D() double GEOM_FADE2D::Triangle2::getInteriorAngle2D (

int ith) const

Note: The getArea() method is deprecated and replaced by getInteriorAngle2D() to keep the names consistent.

Returns

the interior 2D angle at the ith vertex

6.17.3.6 getIntraTriangleIndex() [1/3] int GEOM_FADE2D::Triangle2::getIntraTriangleIndex (

const Point2 ∗ p) const [inline]

Figure 23 Intra triangle index of a vertex pointer

Parameters

p is a pointer to a vertex in ∗this

Returns

the intra-triangle-index 0,1 or 2 of p in ∗this

6.17.3.7 getIntraTriangleIndex() [2/3] int GEOM_FADE2D::Triangle2::getIntraTriangleIndex (

const Point2 ∗ p0,

const Point2 ∗ p1) const [inline]

Returns

the index of the edge (p0,p1) in the triangle

6.17.3.8 getIntraTriangleIndex() [3/3] int GEOM_FADE2D::Triangle2::getIntraTriangleIndex (

const Triangle2 ∗ pTriangle) const [inline]

Figure 24 pTriangle is the 0-th neighbor of ∗this

Generated by Doxygen

6.17 GEOM_FADE2D::Triangle2 Class Reference 87

Parameters

pTriangle is a neighbor triangle of ∗this.

Returns

the intra-triangle-index of the vertex in ∗this which is opposite (i.e., does not touch the neighbor) pTriangle.

6.17.3.9 getOppositeTriangle() Triangle2 ∗ GEOM_FADE2D::Triangle2::getOppositeTriangle (

const int ith) const [inline]

Returns the i-th neighbor triangle, i.e. the one opposite to the i-th corner.

Figure 25 Neighbors of a triangle

Parameters

ith is the intra-triangle-index of the opposite corner of ∗this

Returns

the i-th neighbor triangle, i.e. the one opposite to the i-th vertex or NULL if no neighbor triangle exists which is
the case at the convex hull edges of the triangulation.

6.17.3.10 getSquaredEdgeLength2D() double GEOM_FADE2D::Triangle2::getSquaredEdgeLength2D (

int ith) const

Method for internal use
Squared edge length
Returns the squared length of the ith edge.

6.17.3.11 hasOnEdge() bool GEOM_FADE2D::Triangle2::hasOnEdge (

int i,

const Point2 & q) const

Returns

if q is exactly on the i-th edge

6.17.3.12 hasVertex() [1/2] bool GEOM_FADE2D::Triangle2::hasVertex (

const Point2 & vtx) const

Generated by Doxygen

88

Returns

if vtx is a corner of the triangle

6.17.3.13 hasVertex() [2/2] bool GEOM_FADE2D::Triangle2::hasVertex (

Point2 ∗ pVtx) const

Returns

if pVtx is a corner of the triangle

6.17.3.14 setOppTriangle() void GEOM_FADE2D::Triangle2::setOppTriangle (

const int ith,

Triangle2 ∗ pTriangle) [inline]

Figure 26 Make pTriangle the 0-th neighbor of ∗this

Parameters

ith is the index of the corner of ∗this which does not touch pTriangle

pTriangle is a pointer to the triangle which shares two corners with ∗this

The documentation for this class was generated from the following file:

• Triangle2.h

6.18 GEOM_FADE2D::TriangleAroundVertexIterator Class Reference

Iterator for all triangles around a given vertex.
#include <TriangleAroundVertexIterator.h>

Public Member Functions

• TriangleAroundVertexIterator (const Point2 ∗pPnt_)

Constructor.

• TriangleAroundVertexIterator (const TriangleAroundVertexIterator &it)

Copy constructor.

• TriangleAroundVertexIterator (Point2 ∗pPnt_, Triangle2 ∗pTr_)

Constructor.

• bool operator!= (const TriangleAroundVertexIterator &rhs)

operator!=()

• Triangle2 ∗ operator∗ ()

Returns a pointer to the current triangle (or NULL)

Generated by Doxygen

6.18 GEOM_FADE2D::TriangleAroundVertexIterator Class Reference 89

• TriangleAroundVertexIterator & operator++ ()

Proceed to the next triangle (the one in counterclockwise order)

• TriangleAroundVertexIterator & operator-- ()

Proceed to the previous triangle (the one in clockwise order)

• TriangleAroundVertexIterator & operator= (const TriangleAroundVertexIterator &other)
• bool operator== (const TriangleAroundVertexIterator &rhs)

operator==()

• Triangle2 ∗ previewNextTriangle ()

Preview next triangle (CCW direction)

• Triangle2 ∗ previewPrevTriangle ()

Preview previous triangle (CW direction)

Protected Member Functions

• void loop ()

Protected Attributes

• const Point2 ∗ pPnt
• Triangle2 ∗ pSavedTr
• Triangle2 ∗ pTr

6.18.1 Detailed Description

The TriangleAroundVertexIterator iterates over all triangles incident to a given vertex of a Fade_2D instance. The
advantage is that the incident triangles can be visited in a certain order, namely counterclockwise with operator++()
or clockwise using operator--(). If the order is not important you can use Fade_2D::getIncidentTriangles() instead.

Figure 27 Left: the iterator visits the triangles around a vertex. Right: The iterator 'jumps' over the border
edges of the triangulation

6.18.2 Constructor & Destructor Documentation

6.18.2.1 TriangleAroundVertexIterator() [1/3] GEOM_FADE2D::TriangleAroundVertexIterator::Triangle←↩

AroundVertexIterator (

const Point2 ∗ pPnt_) [inline], [explicit]

Parameters

p←↩

Pnt←↩

_

is the vertex whose incident triangles can be visited with the iterator

Generated by Doxygen

90

Initially the iterator points to an arbitrary triangle (not NULL)

6.18.2.2 TriangleAroundVertexIterator() [2/3] GEOM_FADE2D::TriangleAroundVertexIterator::Triangle←↩

AroundVertexIterator (

Point2 ∗ pPnt_,

Triangle2 ∗ pTr_) [inline]

Parameters

p←↩

Pnt←↩

_

is the vertex whose incident triangles can be visited with the iterator

pTr←↩

_
is the triangle the iterator initially points to

6.18.2.3 TriangleAroundVertexIterator() [3/3] GEOM_FADE2D::TriangleAroundVertexIterator::Triangle←↩

AroundVertexIterator (

const TriangleAroundVertexIterator & it) [inline]

Copies the iterator it

6.18.3 Member Function Documentation

6.18.3.1 operator"!=() bool GEOM_FADE2D::TriangleAroundVertexIterator::operator!= (

const TriangleAroundVertexIterator & rhs) [inline]

Compares the center and the current triangle of ∗this and rhs

Returns

true when they are different, false otherwise

6.18.3.2 operator∗() Triangle2∗ GEOM_FADE2D::TriangleAroundVertexIterator::operator∗ () [inline]

Dereferencing the iterator yields a pointer to the triangle to which the iterator points.

Warning

This method might yield NULL at the border of a triangulation.

6.18.3.3 operator++() TriangleAroundVertexIterator& GEOM_FADE2D::TriangleAroundVertexIterator←↩

::operator++ () [inline]

Moves the iterator to the next triangle in counterclockwise order.

Warning

At the border of a triangulation, two border edges exist which are incident to the center vertex. Consequently,
the neighbor triangles are NULL there. If operator++() leads the iterator off the triangulation then the iterator
will point to NULL. Another call to operator++() will set the iterator to the next triangle in counterclockwise
order.

Generated by Doxygen

6.19 GEOM_FADE2D::UserPredicateT Class Reference 91

6.18.3.4 operator--() TriangleAroundVertexIterator& GEOM_FADE2D::TriangleAroundVertexIterator←↩

::operator-- () [inline]

Moves the iterator to the next triangle in clockwise order.

Warning

At the border of a triangulation, two border edges are incident to the center vertex. Consequently, the neighbor
triangles are NULL there. If operator--() leads the iterator off the triangulation then the iterator will point to N←↩

ULL. Another call to operator--() will set the iterator to the next triangle in clockwise order.

6.18.3.5 operator==() bool GEOM_FADE2D::TriangleAroundVertexIterator::operator== (

const TriangleAroundVertexIterator & rhs) [inline]

Compares the center and the current triangle of ∗this and rhs

Returns

true when they are identically or false otherwise

6.18.3.6 previewNextTriangle() Triangle2∗ GEOM_FADE2D::TriangleAroundVertexIterator::preview←↩

NextTriangle () [inline]

Returns

the next triangle (the one in CCW direction) without changing the current position.

Warning

This method might yield NULL at the border of a triangulation.

6.18.3.7 previewPrevTriangle() Triangle2∗ GEOM_FADE2D::TriangleAroundVertexIterator::preview←↩

PrevTriangle () [inline]

Returns

the previous triangle (the one in CW direction) without changing the current position.

Warning

This method might yield NULL at the border of a triangulation.

The documentation for this class was generated from the following file:

• TriangleAroundVertexIterator.h

6.19 GEOM_FADE2D::UserPredicateT Class Reference

User defined predicate.
#include <UserPredicates.h>

Public Member Functions

• virtual bool operator() (const Triangle2 ∗)=0

6.19.1 Detailed Description

See also

http://www.geom.at/remove-border-triangles/

The documentation for this class was generated from the following file:

• UserPredicates.h

Generated by Doxygen

http://www.geom.at/remove-border-triangles/

92

6.20 GEOM_FADE2D::Vector2 Class Reference

Vector.
#include <Vector2.h>

Public Member Functions

• Vector2 ()

Default constructor.

• Vector2 (const double x_, const double y_)

Constructor.

• Vector2 (const Vector2 &v_)

Copy constructor.

• bool isDegenerate () const

isDegenerate

• double length () const

Get the length of the vector.

• double operator∗ (const Vector2 &other) const

Scalar product.

• Vector2 operator∗ (double val) const

Multiply by a scalar value.

• Vector2 operator/ (double val) const

Divide by a scalar value.

• Vector2 & operator= (const Vector2 &other)

Assignment operator.

• Vector2 orthogonalVector () const
• void set (const double x_, const double y_)

Set the values.

• double sqLength () const

Get the squared length of the vector.

• double x () const

Get the x-value.

• double y () const

Get the y-value.

Protected Attributes

• double valX
• double valY

6.20.1 Detailed Description

This class represents a vector in 2D

6.20.2 Constructor & Destructor Documentation

6.20.2.1 Vector2() [1/3] GEOM_FADE2D::Vector2::Vector2 (

const double x_,

const double y_)

6.20.2.2 Vector2() [2/3] GEOM_FADE2D::Vector2::Vector2 ()

The vector is initialized to (0,0)

Generated by Doxygen

6.21 GEOM_FADE2D::Visualizer2 Class Reference 93

6.20.2.3 Vector2() [3/3] GEOM_FADE2D::Vector2::Vector2 (

const Vector2 & v_)

Create a copy of vector v_

6.20.3 Member Function Documentation

6.20.3.1 isDegenerate() bool GEOM_FADE2D::Vector2::isDegenerate () const

Returns

true if the vector length is 0, false otherwise.

The documentation for this class was generated from the following file:

• Vector2.h

6.21 GEOM_FADE2D::Visualizer2 Class Reference

Visualizer2 is a general Postscript writer. It draws the objects Point2, Segment2, Triangle2, Circle2 and Label.
#include <Visualizer2.h>

Public Member Functions

• Visualizer2 (const char ∗filename_)

Constructor.
• void addHeaderLine (const char ∗s)

Add a header line to the visualization.
• void addObject (const Circle2 &circ, const Color &c)

Add a Circle2 object to the visualization.
• void addObject (const Edge2 &edge, const Color &c)

Add an Edge2 object to the visualization.
• void addObject (const Label &lab, const Color &c)

Add a Label object to the visualization.
• void addObject (const Point2 &pnt, const Color &c)

Add a Point2 object to the visualization.
• void addObject (const Segment2 &seg, const Color &c)

Add a Segment2 object to the visualization.
• void addObject (const std::vector< ConstraintSegment2 ∗ > &vConstraintSegments, const Color &c)

Add a vector of ConstraintSegment2 objects to the visualization.
• void addObject (const std::vector< Edge2 > &vSegments, const Color &c)

Add a vector of Edge2 objects to the visualization.
• void addObject (const std::vector< Point2 ∗ > &vPoints, const Color &c)

Add a vector of Point2∗ to the visualization.
• void addObject (const std::vector< Point2 > &vPoints, const Color &c)

Add a vector of Point2 objects to the visualization.
• void addObject (const std::vector< Segment2 > &vSegments, const Color &c)

Add a vector of Segment2 objects to the visualization.
• void addObject (const std::vector< Triangle2 ∗ > &vT, const Color &c)

Add a Triangle2∗ vector to the visualization.
• void addObject (const std::vector< Triangle2 > &vT, const Color &c)

Add a vector of Triangle2 objects to the visualization.
• void addObject (const Triangle2 &tri, const Color &c)

Add a Triangle2 object to the visualization.
• void writeFile ()

Finish and write the postscript file.

Generated by Doxygen

94

Protected Member Functions

• void changeColor (const Color &c)
• void changeColor (float r, float g, float b, float linewidth, bool bFill)
• void periodicStroke ()
• double scaledDouble (const double &d)
• Point2 scaledPoint (const Point2 &p)
• void setRange ()
• void writeCircle (const Point2 &p1_, double radius, bool bFill)
• void writeFooter ()
• void writeHeader (const char ∗title)
• void writeHeaderLines ()
• void writeLabel (Label l)
• void writeLine (const Point2 &pSource, const Point2 &pTarget)
• void writePoint (Point2 &p1_, float size)
• void writeTriangle (const Point2 &p0_, const Point2 &p1_, const Point2 &p2_, bool bFill, double width)
• void writeTriangle (const Triangle2 ∗pT, bool bFill_, double width)

Protected Attributes

• Bbox2 bbox
• bool bFileClosed
• bool bFill
• Color lastColor
• std::ofstream outFile
• Dat ∗ pDat
• int updateCtr
• std::vector< std::pair< Circle2, Color > > vCircles
• std::vector< std::pair< Label, Color > > vLabels
• std::vector< std::pair< Point2, Color > > vPoints
• std::vector< std::pair< Segment2, Color > > vSegments
• std::vector< std::pair< Triangle2, Color > > vTriangles

6.21.1 Detailed Description

See also

http://www.geom.at/example2-traversing/

Figure 28 Example output of the Visualizer

6.21.2 Constructor & Destructor Documentation

Generated by Doxygen

http://www.geom.at/example2-traversing/

6.22 GEOM_FADE2D::Zone2 Class Reference 95

6.21.2.1 Visualizer2() GEOM_FADE2D::Visualizer2::Visualizer2 (

const char ∗ filename_) [explicit]

Parameters

filename←↩

_
is the name of the postscript file to be written

6.21.3 Member Function Documentation

6.21.3.1 writeFile() void GEOM_FADE2D::Visualizer2::writeFile ()

Note

This method must be called at the end when all the objects have been added.

The documentation for this class was generated from the following file:

• Visualizer2.h

6.22 GEOM_FADE2D::Zone2 Class Reference

Zone2 is a certain defined area of a triangulation.
#include <Zone2.h>

Public Member Functions

• Zone2 ∗ convertToBoundedZone ()

Convert a zone to a bounded zone.

• void debug (const char ∗name="")

Development function.

• double getArea2D () const

Get 2D Area.

• void getBorderEdges (std::vector< Edge2 > &vBorderEdgesOut) const

Get border edges.

• void getBoundaryEdges (std::vector< Edge2 > &vEdges) const

Compute the boundary edges of the zone.

• void getBoundarySegments (std::vector< Segment2 > &vSegments) const

Compute the boundary segments of the zone.

• Bbox2 getBoundingBox () const

Compute the bounding box.

• ConstraintGraph2 ∗ getConstraintGraph () const

Get the associated constraint.

• void getConstraintGraphs (std::vector< ConstraintGraph2 ∗ > &vConstraintGraphs_) const

Get the associated constraint graphs.

• size_t getNumberOfTriangles () const

Get the number of triangles.

• void getTriangles (std::vector< Triangle2 ∗ > &vTriangles_) const

Get the triangles of the zone.

• void getVertices (std::vector< Point2 ∗ > &vVertices_) const

Get the vertices of the zone.

• ZoneLocation getZoneLocation () const

Get the zone location.

Generated by Doxygen

96

• size_t numberOfConstraintGraphs () const

Get a the number of ConstraintGraph2 objects.
• bool save (const char ∗filename)

Save the zone.
• void show (const char ∗postscriptFilename, bool bShowFull, bool bWithConstraints) const

Postscript visualization.
• void show (Visualizer2 ∗pVisualizer, bool bShowFull, bool bWithConstraints) const

Postscript visualization.
• void statistics (const char ∗s) const
• void subscribe (MsgType msgType, MsgBase ∗pMsg)

Register a message receiver.
• void unifyGrid (double tolerance)
• void unsubscribe (MsgType msgType, MsgBase ∗pMsg)

Unregister a message receiver.
• void writeObj (const char ∗outFilename) const

Write the zone to ∗.obj Writes the triangles of the present Zone2 to an ∗.obj file (The ∗.obj format represents a 3D
scene).

Protected Attributes

• Dt2 ∗ pDt
• Progress ∗ pZoneProgress
• ZoneLocation zoneLoc

Friends

• Zone2 ∗ peelOffIf (Zone2 ∗pZone, UserPredicateT ∗pPredicate, bool bVerbose)
• Zone2 ∗ zoneDifference (Zone2 ∗pZone0, Zone2 ∗pZone1)

Compute the difference of two zones.
• Zone2 ∗ zoneIntersection (Zone2 ∗pZone0, Zone2 ∗pZone1)

Compute the intersection of two zones.
• Zone2 ∗ zoneSymmetricDifference (Zone2 ∗pZone0, Zone2 ∗pZone1)

Compute the symmetric difference of two zones.
• Zone2 ∗ zoneUnion (Zone2 ∗pZone0, Zone2 ∗pZone1)

Compute the union of two zones.

6.22.1 Detailed Description

See also

http://www.geom.at/example4-zones-defined-areas-in-triangulations/

http://www.geom.at/boolean-operations/

createZone in the Fade2D class

6.22.2 Member Function Documentation

6.22.2.1 convertToBoundedZone() Zone2∗ GEOM_FADE2D::Zone2::convertToBoundedZone ()

The mesh generation algorithms refine() and refineAdvanced() require a zone object that is bounded by constraint
segments. This is always the case for zones with zoneLocation ZL_INSIDE but other types of zones may be
unbounded. For convenience this method is provided to create a bounded zone from a possibly unbounded one.

Returns

a pointer to a new Zone2 object with zoneLocation ZL_RESULT_BOUNDED or a pointer to the present zone
if this->getZoneLocation() is ZL_INSIDE.

Generated by Doxygen

http://www.geom.at/example4-zones-defined-areas-in-triangulations/
http://www.geom.at/boolean-operations/

6.22 GEOM_FADE2D::Zone2 Class Reference 97

6.22.2.2 getArea2D() double GEOM_FADE2D::Zone2::getArea2D () const

Returns the 2D area of the zone.
Note: The getArea() method is deprecated and replaced by getArea2D() to keep the names consistent.

6.22.2.3 getBorderEdges() void GEOM_FADE2D::Zone2::getBorderEdges (

std::vector< Edge2 > & vBorderEdgesOut) const

Returns

: the CCW oriented border edges of the zone

6.22.2.4 getConstraintGraph() ConstraintGraph2∗ GEOM_FADE2D::Zone2::getConstraintGraph ()

const

Returns

a pointer to the ConstraintGraph2 object which defines the zone.
or NULL for ZL_RESULT-, ZL_GROW and ZL_GLOBAL_-zones.

6.22.2.5 getConstraintGraphs() void GEOM_FADE2D::Zone2::getConstraintGraphs (

std::vector< ConstraintGraph2 ∗ > & vConstraintGraphs_) const

6.22.2.6 getNumberOfTriangles() size_t GEOM_FADE2D::Zone2::getNumberOfTriangles () const

Warning

This method is fast but O(n), so don't call it frequently in a loop.

6.22.2.7 getTriangles() void GEOM_FADE2D::Zone2::getTriangles (

std::vector< Triangle2 ∗ > & vTriangles_) const

This command fetches the existing triangles of the zone.

Note

Fade_2D::void applyConstraintsAndZones() must be called after the last insertion of points and constraints.

that the lifetime of data from the Fade2D datastructures does exceed the lifetime of the Fade2D object.

6.22.2.8 getVertices() void GEOM_FADE2D::Zone2::getVertices (

std::vector< Point2 ∗ > & vVertices_) const

6.22.2.9 getZoneLocation() ZoneLocation GEOM_FADE2D::Zone2::getZoneLocation () const

Returns

ZL_INSIDE if the zone applies to the triangles inside one or more ConstraintGraph2 objects
ZL_OUTSIDE if the zone applies to the outside triangles
ZL_GLOBAL if the zone applies (dynamically) to all triangles
ZL_RESULT if the zone is the result of a set operation
ZL_GROW if the zone is specified by a set of constraint graphs and an inner point

Generated by Doxygen

98

Figure 29 An ouside zone and in inside zone

6.22.2.10 numberOfConstraintGraphs() size_t GEOM_FADE2D::Zone2::numberOfConstraintGraphs ()

const

A Zone2 object might be defined by zero, one or more ConstraintGraph2 objects.

6.22.2.11 save() bool GEOM_FADE2D::Zone2::save (

const char ∗ filename)

This command saves the present Zone2 to a binary file. Any constraint edges and custom indices in the domain
are retained.

Parameters

in filename is the output filename

Returns

whether the operation was successful

Note

A Delaunay triangulation is convex without holes but this may not hold for the zone to be saved. Thus extra
triangles may be saved to fill concavities. These extra-triangles will belong to the Fade_2D instance but not to
the Zone2 object when reloaded.

See also

Use the similar command Fade_2D::saveZones(const char∗ file, std::vector<Zone2∗>& vZones) to store
more than just one zone. Use Fade_2D::saveTriangulation() to store all triangles of the triangulation plus
any specified zones. Use Fade_2D::load() to reload the data from such files.

6.22.2.12 show() [1/2] void GEOM_FADE2D::Zone2::show (

const char ∗ postscriptFilename,

bool bShowFull,

bool bWithConstraints) const

Generated by Doxygen

6.22 GEOM_FADE2D::Zone2 Class Reference 99

Parameters

postscriptFilename is the name of the output file.

bShowFull specifies if only the zone or the full triangulation shall be drawn

bWithConstraints specifies if constraint edges shall be drawn

6.22.2.13 show() [2/2] void GEOM_FADE2D::Zone2::show (

Visualizer2 ∗ pVisualizer,

bool bShowFull,

bool bWithConstraints) const

Parameters

pVisualizer is a pointer to an existing Visualizer2 object.

Note

You must call pVisualizer->writeFile() before program end

Parameters

bShowFull specifies if only the zone or the full triangulation shall be drawn

bWithConstraints specifies if constraint edges shall be drawn

6.22.2.14 statistics() void GEOM_FADE2D::Zone2::statistics (

const char ∗ s) const

Statistics
Prints statistics to stdout.

6.22.2.15 subscribe() void GEOM_FADE2D::Zone2::subscribe (

MsgType msgType,

MsgBase ∗ pMsg)

Parameters

msgType is the type of message the subscriber shall receive, e.g. MSG_PROGRESS or MSG_WARNING

pMsg is a pointer to a custom class derived from MsgBase

6.22.2.16 unifyGrid() void GEOM_FADE2D::Zone2::unifyGrid (

double tolerance)

Unify Grid
A Delaunay triangulation not unique when when 2 or more triangles share a common circumcircle. As a conse-
quence the four corners of a rectangle can be triangulated in two different ways: Either the diagonal proceeds from
the lower left to the upper right corner or it connects the other two corners. Both solutions are valid and an arbitrary
one is applied when points are triangulated. To improve the repeatability and for reasons of visual appearance this
method unifies such diagonals to point from the lower left to the upper right corner (or in horizontal direction).

Generated by Doxygen

100

Parameters

tolerance is 0 when only exact cases of more than 3 points on a common circumcircle shall be changed. But
in practice input data can be disturbed by noise and tiny rounding errors such that grid points are
not exactly on a grid. The numeric error is computed as error = abs(diagonalA−diagonalB)

max(diagonalA,diagonalB) . and
tolerance is an upper threshold to allow modification despite such tiny inaccuracies. Use with
caution, such flips break the empty circle property and this may or may not fit your setting.

6.22.2.17 unsubscribe() void GEOM_FADE2D::Zone2::unsubscribe (

MsgType msgType,

MsgBase ∗ pMsg)

Parameters

msgType is the type of message the subscriber shall not receive anymore

pMsg is a pointer to a custom class derived from MsgBase

6.22.2.18 writeObj() void GEOM_FADE2D::Zone2::writeObj (

const char ∗ outFilename) const

Parameters

outFilename is the output filename

6.22.3 Friends And Related Function Documentation

6.22.3.1 zoneDifference Zone2∗ zoneDifference (

Zone2 ∗ pZone0,

Zone2 ∗ pZone1) [friend]

Returns

a new zone containing the triangles of ∗pZone0 minus the ones of ∗pZone1

Note

pZone0 and pZone1 must belong to the same Fade_2D object.

6.22.3.2 zoneIntersection Zone2∗ zoneIntersection (

Zone2 ∗ pZone0,

Zone2 ∗ pZone1) [friend]

Returns

a new zone containing the intersection of ∗pZone0 and ∗pZone1

Note

pZone0 and pZone1 must belong to the same Fade_2D object.

Generated by Doxygen

7 File Documentation 101

6.22.3.3 zoneSymmetricDifference Zone2∗ zoneSymmetricDifference (

Zone2 ∗ pZone0,

Zone2 ∗ pZone1) [friend]

Returns

a new zone containing the triangles that are present in one of the zones but not in the other one.

Note

pZone0 and pZone1 must belong to the same Fade_2D object.

6.22.3.4 zoneUnion Zone2∗ zoneUnion (

Zone2 ∗ pZone0,

Zone2 ∗ pZone1) [friend]

Returns

a new zone containing the union of the triangles of ∗pZone0 and ∗pZone1

Note

pZone0 and pZone1 must belong to the same Fade_2D object.

The documentation for this class was generated from the following file:

• Zone2.h

7 File Documentation

7.1 Bbox2.h File Reference

#include "Point2.h"
#include "common.h"

Classes

• class GEOM_FADE2D::Bbox2

Bbox2 is an axis aligned 2D bounding box.

Functions

• Bbox2 GEOM_FADE2D::getBox (std::vector< Point2 ∗ > &vP)
• Bbox2 GEOM_FADE2D::getBox (std::vector< Point2 > &vP)
• std::ostream & GEOM_FADE2D::operator<< (std::ostream &stream, const Bbox2 &pC)

7.2 Color.h File Reference

#include "common.h"

Classes

• class GEOM_FADE2D::Color

Color for visualization.

Generated by Doxygen

102

Enumerations

• enum GEOM_FADE2D::Colorname {
CRED, CGREEN, CBLUE, CBLACK,
CPINK, CGRAY, CORANGE, CLIGHTBLUE,
CLIGHTBROWN, CDARKBROWN, CPURPLE, COLIVE,
CLAWNGREEN, CPALEGREEN, CCYAN, CYELLOW,
CWHITE }

Predefined colors for convenience.

Functions

• std::ostream & GEOM_FADE2D::operator<< (std::ostream &stream, const Color &c)

7.3 ConstraintSegment2.h File Reference

#include <set>
#include "common.h"

Classes

• class GEOM_FADE2D::ConstraintSegment2

A ConstraintSegment2 represents a Constraint Edge.

Enumerations

• enum GEOM_FADE2D::ConstraintInsertionStrategy { CIS_CONFORMING_DELAUNAY =0, GEOM_FADE2D::CIS_CONSTRAINED_DELAUNAY
=1, GEOM_FADE2D::CIS_KEEP_DELAUNAY =0, GEOM_FADE2D::CIS_IGNORE_DELAUNAY =1 }

Constraint Insertion Strategy determines how a constraint edge shall be inserted:

7.3.1 Enumeration Type Documentation

7.3.1.1 ConstraintInsertionStrategy enum GEOM_FADE2D::ConstraintInsertionStrategy

• CIS_CONSTRAINED_DELAUNAY inserts a segment without subdivision unless required (which is the case
if existing vertices or constraint segments are crossed).

All other constraint insertion strategies are deprecated and only kept for backwards compatibility. Their behavior
can be achieved using ConstraintGraph2::makeDelaunay() and/or Fade_2D::drape(). See also examples_25←↩

D/terrain.cpp.

Note

In former library versions the terms CIS_IGNORE_DELAUNAY and CIS_KEEP_DELAUNAY were used but
these were misleading and are now deprecated. For backwards compatibility they are kept.

Enumerator

CIS_CONSTRAINED_DELAUNAY Deprecated.

CIS_KEEP_DELAUNAY Deprecated name.

CIS_IGNORE_DELAUNAY Deprecated.

Generated by Doxygen

7.5 TriangleAroundVertexIterator.h File Reference 103

7.4 SegmentChecker.h File Reference

#include <map>
#include "common.h"
#include "Segment2.h"
#include "MsgBase.h"

Classes

• class GEOM_FADE2D::SegmentChecker

SegmentChecker identifies intersecting line segments.

Enumerations

• enum SegmentIntersectionType {
SIT_UNINITIALIZED, SIT_NONE, SIT_SEGMENT, SIT_POINT,
SIT_ENDPOINT }

7.4.1 Enumeration Type Documentation

7.4.1.1 SegmentIntersectionType enum SegmentIntersectionType

The Segment intersection type enumerates the way two line segments intersect each other

Enumerator

SIT_UNINITIALIZED Invalid value
SIT_NONE No intersection

SIT_SEGMENT The intersection is a non-degenerate segment (collinear intersection)

SIT_POINT The intersection is a single point differnt from the endpoints

SIT_ENDPOINT The two segments share a common endpoint which is the only intersection

7.5 TriangleAroundVertexIterator.h File Reference

#include "common.h"
#include "Point2.h"
#include "Triangle2.h"

Classes

• class GEOM_FADE2D::TriangleAroundVertexIterator

Iterator for all triangles around a given vertex.

Functions

• int GEOM_FADE2D::inc1 (int num)
• int GEOM_FADE2D::inc2 (int num)

Generated by Doxygen

Index

add
GEOM_FADE2D::Bbox2, 29, 30

addLockedConstraint
GEOM_FADE2D::MeshGenParams, 66

applyConstraintsAndZones
GEOM_FADE2D::Fade_2D, 48

bAllowConstraintSplitting
GEOM_FADE2D::MeshGenParams, 68

Bbox2
GEOM_FADE2D::Bbox2, 29

Bbox2.h, 101
bKeepExistingSteinerPoints

GEOM_FADE2D::MeshGenParams, 68

capAspectLimit
GEOM_FADE2D::MeshGenParams, 68

checkValidity
GEOM_FADE2D::Fade_2D, 48

Circle2
GEOM_FADE2D::Circle2, 33

CIS_CONSTRAINED_DELAUNAY
ConstraintSegment2.h, 102

CIS_IGNORE_DELAUNAY
ConstraintSegment2.h, 102

CIS_KEEP_DELAUNAY
ConstraintSegment2.h, 102

Color
GEOM_FADE2D::Color, 35

Color.h, 101
command

GEOM_FADE2D::MeshGenParams, 68
computeBoundingBox

GEOM_FADE2D::Fade_2D, 48
computeCenter

GEOM_FADE2D::Bbox2, 30
ConstraintInsertionStrategy

ConstraintSegment2.h, 102
ConstraintSegment2.h, 102

CIS_CONSTRAINED_DELAUNAY, 102
CIS_IGNORE_DELAUNAY, 102
CIS_KEEP_DELAUNAY, 102
ConstraintInsertionStrategy, 102

convertToBoundedZone
GEOM_FADE2D::Zone2, 96

createConstraint
GEOM_FADE2D::Fade_2D, 48

createZone
GEOM_FADE2D::Fade_2D, 50, 51

createZone_cookieCutter
GEOM_FADE2D::Fade_2D, 51

cutTriangles
GEOM_FADE2D::Fade_2D, 51, 52

deleteZone
GEOM_FADE2D::Fade_2D, 52

doIntersect
GEOM_FADE2D::Bbox2, 30

doubleTheBox
GEOM_FADE2D::Bbox2, 30

drape
GEOM_FADE2D::Fade_2D, 52

Edge2
GEOM_FADE2D::Edge2, 42

edgesToPolygons
Tools, 14

enableMultithreading
GEOM_FADE2D::Fade_2D, 53

exportTriangulation
GEOM_FADE2D::Fade_2D, 53

Fade_2D
GEOM_FADE2D::Fade_2D, 46

File I/O, 19
readPointsBIN, 19
readSegmentsBIN, 19
readXY, 19
writePointsASCII, 19, 20
writePointsBIN, 20
writeSegmentsBIN, 20

fillHole
Tools, 15

generateCircle
Test Data Generators, 22

generateRandomNumbers
Test Data Generators, 22

generateRandomPoints
Test Data Generators, 23

generateRandomPolygon
Test Data Generators, 24

generateRandomSegments
Test Data Generators, 25

generateSineSegments
Test Data Generators, 26

GEOM_FADE2D::Bbox2, 28
add, 29, 30
Bbox2, 29
computeCenter, 30
doIntersect, 30
doubleTheBox, 30
get_maxX, 30
get_maxY, 30
get_minX, 31
get_minY, 31
getBounds, 31
getCorners, 31
getMaxCoord, 31
getMaxPoint, 31
getMaxRange, 31
getMinCoord, 31

106 INDEX

getMinPoint, 31
getOffsetCorners, 32
getRangeX, 32
getRangeY, 32
inflateIfDegenerate, 32
isInBox, 32
isValid, 32
operator+, 32

GEOM_FADE2D::Circle2, 33
Circle2, 33
getCenter, 34
getRadius, 34
getSqRadius, 34

GEOM_FADE2D::Color, 34
Color, 35

GEOM_FADE2D::ConstraintGraph2, 36
getChildConstraintSegments, 37
getDirectChildren, 37
getDt2, 37
getInsertionStrategy, 38
getOriginalConstraintSegments, 38
getPolygonVertices, 38
isConstraint, 38
isOriented, 38
isPolygon, 38
isReverse, 39
makeDelaunay, 39
show, 39

GEOM_FADE2D::ConstraintSegment2, 39
getCIS, 40
getSrc, 41
getTrg, 41
insertAndSplit, 41
isAlive, 41
split_combinatorialOnly, 41

GEOM_FADE2D::Edge2, 41
Edge2, 42
getIndex, 42
getLength2D, 43
getPoints, 43
getSrc, 43
getTrg, 43
getTriangle, 43
getTriangles, 43
operator!=, 44
operator<, 44
operator==, 44

GEOM_FADE2D::Fade_2D, 44
applyConstraintsAndZones, 48
checkValidity, 48
computeBoundingBox, 48
createConstraint, 48
createZone, 50, 51
createZone_cookieCutter, 51
cutTriangles, 51, 52
deleteZone, 52
drape, 52
enableMultithreading, 53

exportTriangulation, 53
Fade_2D, 46
getAdjacentTriangle, 54
getConstraintSegment, 54
getConvexHull, 54
getIncidentTriangles, 54
getIncidentVertices, 54
getOrientation, 54
getTrianglePointers, 55
getVertexPointers, 55
hasArea, 55
importTriangles, 56
insert, 56, 57
isConstraint, 57
load, 58
locate, 58
measureTriangulationTime, 58
numberOfPoints, 59
numberOfTriangles, 59
refine, 59
refineAdvanced, 59
remove, 60
saveTriangulation, 60
saveZones, 60
setFastMode, 61
setNumCPU, 61
show, 61, 62
statistics, 62
subscribe, 62
unsubscribe, 62
writeObj, 62, 63
writeWebScene, 63

GEOM_FADE2D::FadeExport, 63
getCoordinates, 64
getCornerIndices, 64

GEOM_FADE2D::Func_gtEdge2D, 64
GEOM_FADE2D::Func_ltEdge2D, 64
GEOM_FADE2D::Label, 65

Label, 65
GEOM_FADE2D::MeshGenParams, 65

addLockedConstraint, 66
bAllowConstraintSplitting, 68
bKeepExistingSteinerPoints, 68
capAspectLimit, 68
command, 68
getMaxEdgeLength, 67
getMaxTriangleArea, 67
gridLength, 68
gridVector, 69
growFactor, 69
growFactorMinArea, 69
maxEdgeLength, 70
maxTriangleArea, 70
minAngleDegree, 70
minEdgeLength, 70

GEOM_FADE2D::MsgBase, 70
update, 70

GEOM_FADE2D::Point2, 70

Generated by Doxygen

INDEX 107

getCustomIndex, 72
getIncidentTriangle, 72
getMaxAbs, 73
operator!=, 73
operator<, 73
operator>, 73
operator==, 73
Point2, 72
set, 73, 74
setCustomIndex, 74
setIncidentTriangle, 74
x, 74
xy, 74
y, 74

GEOM_FADE2D::Segment2, 75
getSqLen2D, 76
getSrc, 76
getTrg, 76
operator==, 76
Segment2, 75
swapSrcTrg, 76

GEOM_FADE2D::SegmentChecker, 76
getIllegalSegments, 78
getIndex, 78
getIntersectionPoint, 78
getIntersectionSegment, 78
getIntersectionType, 79
getIntersectionTypeString, 79
getIntersectors, 79
getNumberOfSegments, 80
getSegment, 80
SegmentChecker, 77
showIllegalSegments, 80
showSegments, 81
subscribe, 82
unsubscribe, 82

GEOM_FADE2D::Triangle2, 83
getArea2D, 85
getBarycenter, 85
getCorner, 85
getDual, 85
getInteriorAngle2D, 85
getIntraTriangleIndex, 86
getOppositeTriangle, 87
getSquaredEdgeLength2D, 87
hasOnEdge, 87
hasVertex, 87, 88
setOppTriangle, 88
Triangle2, 84

GEOM_FADE2D::TriangleAroundVertexIterator, 88
operator!=, 90
operator∗, 90
operator++, 90
operator--, 90
operator==, 91
previewNextTriangle, 91
previewPrevTriangle, 91
TriangleAroundVertexIterator, 89, 90

GEOM_FADE2D::UserPredicateT, 91
GEOM_FADE2D::Vector2, 92

isDegenerate, 93
Vector2, 92

GEOM_FADE2D::Visualizer2, 93
Visualizer2, 94
writeFile, 95

GEOM_FADE2D::Zone2, 95
convertToBoundedZone, 96
getArea2D, 96
getBorderEdges, 97
getConstraintGraph, 97
getConstraintGraphs, 97
getNumberOfTriangles, 97
getTriangles, 97
getVertices, 97
getZoneLocation, 97
numberOfConstraintGraphs, 98
save, 98
show, 98, 99
statistics, 99
subscribe, 99
unifyGrid, 99
unsubscribe, 100
writeObj, 100
zoneDifference, 100
zoneIntersection, 100
zoneSymmetricDifference, 100
zoneUnion, 101

get_maxX
GEOM_FADE2D::Bbox2, 30

get_maxY
GEOM_FADE2D::Bbox2, 30

get_minX
GEOM_FADE2D::Bbox2, 31

get_minY
GEOM_FADE2D::Bbox2, 31

getAdjacentTriangle
GEOM_FADE2D::Fade_2D, 54

getArea2D
GEOM_FADE2D::Triangle2, 85
GEOM_FADE2D::Zone2, 96
Tools, 16

getBarycenter
GEOM_FADE2D::Triangle2, 85

getBorderEdges
GEOM_FADE2D::Zone2, 97

getBorders
Tools, 16

getBounds
GEOM_FADE2D::Bbox2, 31

getCenter
GEOM_FADE2D::Circle2, 34

getChildConstraintSegments
GEOM_FADE2D::ConstraintGraph2, 37

getCIS
GEOM_FADE2D::ConstraintSegment2, 40

getConstraintGraph

Generated by Doxygen

108 INDEX

GEOM_FADE2D::Zone2, 97
getConstraintGraphs

GEOM_FADE2D::Zone2, 97
getConstraintSegment

GEOM_FADE2D::Fade_2D, 54
getConvexHull

GEOM_FADE2D::Fade_2D, 54
getCoordinates

GEOM_FADE2D::FadeExport, 64
getCorner

GEOM_FADE2D::Triangle2, 85
getCornerIndices

GEOM_FADE2D::FadeExport, 64
getCorners

GEOM_FADE2D::Bbox2, 31
getCustomIndex

GEOM_FADE2D::Point2, 72
getDirectChildren

GEOM_FADE2D::ConstraintGraph2, 37
getDt2

GEOM_FADE2D::ConstraintGraph2, 37
getDual

GEOM_FADE2D::Triangle2, 85
getIllegalSegments

GEOM_FADE2D::SegmentChecker, 78
getIncidentTriangle

GEOM_FADE2D::Point2, 72
getIncidentTriangles

GEOM_FADE2D::Fade_2D, 54
getIncidentVertices

GEOM_FADE2D::Fade_2D, 54
getIndex

GEOM_FADE2D::Edge2, 42
GEOM_FADE2D::SegmentChecker, 78

getInsertionStrategy
GEOM_FADE2D::ConstraintGraph2, 38

getInteriorAngle2D
GEOM_FADE2D::Triangle2, 85

getIntersectionPoint
GEOM_FADE2D::SegmentChecker, 78

getIntersectionSegment
GEOM_FADE2D::SegmentChecker, 78

getIntersectionType
GEOM_FADE2D::SegmentChecker, 79

getIntersectionTypeString
GEOM_FADE2D::SegmentChecker, 79

getIntersectors
GEOM_FADE2D::SegmentChecker, 79

getIntraTriangleIndex
GEOM_FADE2D::Triangle2, 86

getLength2D
GEOM_FADE2D::Edge2, 43

getMaxAbs
GEOM_FADE2D::Point2, 73

getMaxCoord
GEOM_FADE2D::Bbox2, 31

getMaxEdgeLength
GEOM_FADE2D::MeshGenParams, 67

getMaxPoint
GEOM_FADE2D::Bbox2, 31

getMaxRange
GEOM_FADE2D::Bbox2, 31

getMaxTriangleArea
GEOM_FADE2D::MeshGenParams, 67

getMinCoord
GEOM_FADE2D::Bbox2, 31

getMinPoint
GEOM_FADE2D::Bbox2, 31

getNumberOfSegments
GEOM_FADE2D::SegmentChecker, 80

getNumberOfTriangles
GEOM_FADE2D::Zone2, 97

getOffsetCorners
GEOM_FADE2D::Bbox2, 32

getOppositeTriangle
GEOM_FADE2D::Triangle2, 87

getOrientation
GEOM_FADE2D::Fade_2D, 54

getOrientation2
Tools, 16

getOrientation2_mt
Tools, 16

getOriginalConstraintSegments
GEOM_FADE2D::ConstraintGraph2, 38

getPoints
GEOM_FADE2D::Edge2, 43

getPolygonVertices
GEOM_FADE2D::ConstraintGraph2, 38

getRadius
GEOM_FADE2D::Circle2, 34

getRangeX
GEOM_FADE2D::Bbox2, 32

getRangeY
GEOM_FADE2D::Bbox2, 32

getSegment
GEOM_FADE2D::SegmentChecker, 80

getSqLen2D
GEOM_FADE2D::Segment2, 76

getSqRadius
GEOM_FADE2D::Circle2, 34

getSquaredEdgeLength2D
GEOM_FADE2D::Triangle2, 87

getSrc
GEOM_FADE2D::ConstraintSegment2, 41
GEOM_FADE2D::Edge2, 43
GEOM_FADE2D::Segment2, 76

getTrg
GEOM_FADE2D::ConstraintSegment2, 41
GEOM_FADE2D::Edge2, 43
GEOM_FADE2D::Segment2, 76

getTriangle
GEOM_FADE2D::Edge2, 43

getTrianglePointers
GEOM_FADE2D::Fade_2D, 55

getTriangles
GEOM_FADE2D::Edge2, 43

Generated by Doxygen

INDEX 109

GEOM_FADE2D::Zone2, 97
getUndirectedEdges

Tools, 17
getVertexPointers

GEOM_FADE2D::Fade_2D, 55
getVertices

GEOM_FADE2D::Zone2, 97
getZoneLocation

GEOM_FADE2D::Zone2, 97
gridLength

GEOM_FADE2D::MeshGenParams, 68
gridVector

GEOM_FADE2D::MeshGenParams, 69
growFactor

GEOM_FADE2D::MeshGenParams, 69
growFactorMinArea

GEOM_FADE2D::MeshGenParams, 69

hasArea
GEOM_FADE2D::Fade_2D, 55

hasOnEdge
GEOM_FADE2D::Triangle2, 87

hasVertex
GEOM_FADE2D::Triangle2, 87, 88

importTriangles
GEOM_FADE2D::Fade_2D, 56

inflateIfDegenerate
GEOM_FADE2D::Bbox2, 32

insert
GEOM_FADE2D::Fade_2D, 56, 57

insertAndSplit
GEOM_FADE2D::ConstraintSegment2, 41

isAlive
GEOM_FADE2D::ConstraintSegment2, 41

isConstraint
GEOM_FADE2D::ConstraintGraph2, 38
GEOM_FADE2D::Fade_2D, 57

isDegenerate
GEOM_FADE2D::Vector2, 93

isInBox
GEOM_FADE2D::Bbox2, 32

isOriented
GEOM_FADE2D::ConstraintGraph2, 38

isPolygon
GEOM_FADE2D::ConstraintGraph2, 38

isReverse
GEOM_FADE2D::ConstraintGraph2, 39

isSimplePolygon
Tools, 17

isValid
GEOM_FADE2D::Bbox2, 32

Label
GEOM_FADE2D::Label, 65

load
GEOM_FADE2D::Fade_2D, 58

locate
GEOM_FADE2D::Fade_2D, 58

makeDelaunay
GEOM_FADE2D::ConstraintGraph2, 39

maxEdgeLength
GEOM_FADE2D::MeshGenParams, 70

maxTriangleArea
GEOM_FADE2D::MeshGenParams, 70

measureTriangulationTime
GEOM_FADE2D::Fade_2D, 58

minAngleDegree
GEOM_FADE2D::MeshGenParams, 70

minEdgeLength
GEOM_FADE2D::MeshGenParams, 70

numberOfConstraintGraphs
GEOM_FADE2D::Zone2, 98

numberOfPoints
GEOM_FADE2D::Fade_2D, 59

numberOfTriangles
GEOM_FADE2D::Fade_2D, 59

operator!=
GEOM_FADE2D::Edge2, 44
GEOM_FADE2D::Point2, 73
GEOM_FADE2D::TriangleAroundVertexIterator, 90

operator<
GEOM_FADE2D::Edge2, 44
GEOM_FADE2D::Point2, 73

operator>
GEOM_FADE2D::Point2, 73

operator∗
GEOM_FADE2D::TriangleAroundVertexIterator, 90

operator+
GEOM_FADE2D::Bbox2, 32

operator++
GEOM_FADE2D::TriangleAroundVertexIterator, 90

operator--
GEOM_FADE2D::TriangleAroundVertexIterator, 90

operator==
GEOM_FADE2D::Edge2, 44
GEOM_FADE2D::Point2, 73
GEOM_FADE2D::Segment2, 76
GEOM_FADE2D::TriangleAroundVertexIterator, 91

Point2
GEOM_FADE2D::Point2, 72

pointsToPolyline
Tools, 17

previewNextTriangle
GEOM_FADE2D::TriangleAroundVertexIterator, 91

previewPrevTriangle
GEOM_FADE2D::TriangleAroundVertexIterator, 91

readPointsBIN
File I/O, 19

readSegmentsBIN
File I/O, 19

readXY
File I/O, 19

refine

Generated by Doxygen

110 INDEX

GEOM_FADE2D::Fade_2D, 59
refineAdvanced

GEOM_FADE2D::Fade_2D, 59
remove

GEOM_FADE2D::Fade_2D, 60

save
GEOM_FADE2D::Zone2, 98

saveTriangulation
GEOM_FADE2D::Fade_2D, 60

saveZones
GEOM_FADE2D::Fade_2D, 60

Segment2
GEOM_FADE2D::Segment2, 75

SegmentChecker
GEOM_FADE2D::SegmentChecker, 77

SegmentChecker.h, 103
SegmentIntersectionType, 103
SIT_ENDPOINT, 103
SIT_NONE, 103
SIT_POINT, 103
SIT_SEGMENT, 103
SIT_UNINITIALIZED, 103

SegmentIntersectionType
SegmentChecker.h, 103

set
GEOM_FADE2D::Point2, 73, 74

setCustomIndex
GEOM_FADE2D::Point2, 74

setFastMode
GEOM_FADE2D::Fade_2D, 61

setIncidentTriangle
GEOM_FADE2D::Point2, 74

setNumCPU
GEOM_FADE2D::Fade_2D, 61

setOppTriangle
GEOM_FADE2D::Triangle2, 88

show
GEOM_FADE2D::ConstraintGraph2, 39
GEOM_FADE2D::Fade_2D, 61, 62
GEOM_FADE2D::Zone2, 98, 99

showIllegalSegments
GEOM_FADE2D::SegmentChecker, 80

showSegments
GEOM_FADE2D::SegmentChecker, 81

SIT_ENDPOINT
SegmentChecker.h, 103

SIT_NONE
SegmentChecker.h, 103

SIT_POINT
SegmentChecker.h, 103

SIT_SEGMENT
SegmentChecker.h, 103

SIT_UNINITIALIZED
SegmentChecker.h, 103

sortRing
Tools, 17

sortRingCCW
Tools, 17

split_combinatorialOnly
GEOM_FADE2D::ConstraintSegment2, 41

statistics
GEOM_FADE2D::Fade_2D, 62
GEOM_FADE2D::Zone2, 99

subscribe
GEOM_FADE2D::Fade_2D, 62
GEOM_FADE2D::SegmentChecker, 82
GEOM_FADE2D::Zone2, 99

swapSrcTrg
GEOM_FADE2D::Segment2, 76

Test Data Generators, 22
generateCircle, 22
generateRandomNumbers, 22
generateRandomPoints, 23
generateRandomPolygon, 24
generateRandomSegments, 25
generateSineSegments, 26

Tools, 14
edgesToPolygons, 14
fillHole, 15
getArea2D, 16
getBorders, 16
getOrientation2, 16
getOrientation2_mt, 16
getUndirectedEdges, 17
isSimplePolygon, 17
pointsToPolyline, 17
sortRing, 17
sortRingCCW, 17

Triangle2
GEOM_FADE2D::Triangle2, 84

TriangleAroundVertexIterator
GEOM_FADE2D::TriangleAroundVertexIterator,

89, 90
TriangleAroundVertexIterator.h, 103

unifyGrid
GEOM_FADE2D::Zone2, 99

unsubscribe
GEOM_FADE2D::Fade_2D, 62
GEOM_FADE2D::SegmentChecker, 82
GEOM_FADE2D::Zone2, 100

update
GEOM_FADE2D::MsgBase, 70

Vector2
GEOM_FADE2D::Vector2, 92

Version Information, 18
Visualizer2

GEOM_FADE2D::Visualizer2, 94

writeFile
GEOM_FADE2D::Visualizer2, 95

writeObj
GEOM_FADE2D::Fade_2D, 62, 63
GEOM_FADE2D::Zone2, 100

writePointsASCII

Generated by Doxygen

INDEX 111

File I/O, 19, 20
writePointsBIN

File I/O, 20
writeSegmentsBIN

File I/O, 20
writeWebScene

GEOM_FADE2D::Fade_2D, 63

x
GEOM_FADE2D::Point2, 74

xy
GEOM_FADE2D::Point2, 74

y
GEOM_FADE2D::Point2, 74

zoneDifference
GEOM_FADE2D::Zone2, 100

zoneIntersection
GEOM_FADE2D::Zone2, 100

zoneSymmetricDifference
GEOM_FADE2D::Zone2, 100

zoneUnion
GEOM_FADE2D::Zone2, 101

Generated by Doxygen

	1 Main Page
	1.1 C++ Constrained Delaunay Triangulation Fade2D
	1.1.1 Getting started with the C++ Delaunay triangulation:
	1.1.2 Compiling for Windows users:
	1.1.3 Compiling under Linux and Mac:
	1.1.4 Directory Contents
	1.1.5 Troubleshooting
	1.1.6 Release notes / History

	2 Module Index
	2.1 Modules

	3 Class Index
	3.1 Class List

	4 File Index
	4.1 File List

	5 Module Documentation
	5.1 Tools
	5.1.1 Detailed Description
	5.1.2 Function Documentation

	5.2 Version Information
	5.2.1 Detailed Description

	5.3 File I/O
	5.3.1 Detailed Description
	5.3.2 Function Documentation

	5.4 Test Data Generators
	5.4.1 Detailed Description
	5.4.2 Generate random polygons and other test objects
	5.4.3 Function Documentation

	6 Class Documentation
	6.1 GEOM_FADE2D::Bbox2 Class Reference
	6.1.1 Detailed Description
	6.1.2 Constructor & Destructor Documentation
	6.1.3 Member Function Documentation

	6.2 GEOM_FADE2D::Circle2 Class Reference
	6.2.1 Detailed Description
	6.2.2 Constructor & Destructor Documentation
	6.2.3 Member Function Documentation

	6.3 GEOM_FADE2D::Color Class Reference
	6.3.1 Detailed Description
	6.3.2 Constructor & Destructor Documentation

	6.4 GEOM_FADE2D::ConstraintGraph2 Class Reference
	6.4.1 Detailed Description
	6.4.2 Member Function Documentation

	6.5 GEOM_FADE2D::ConstraintSegment2 Class Reference
	6.5.1 Detailed Description
	6.5.2 Member Function Documentation

	6.6 GEOM_FADE2D::Edge2 Class Reference
	6.6.1 Constructor & Destructor Documentation
	6.6.2 Member Function Documentation

	6.7 GEOM_FADE2D::Fade_2D Class Reference
	6.7.1 Detailed Description
	6.7.2 Constructor & Destructor Documentation
	6.7.3 Member Function Documentation

	6.8 GEOM_FADE2D::FadeExport Struct Reference
	6.8.1 Detailed Description
	6.8.2 Member Function Documentation

	6.9 GEOM_FADE2D::Func_gtEdge2D Struct Reference
	6.10 GEOM_FADE2D::Func_ltEdge2D Struct Reference
	6.11 GEOM_FADE2D::Label Class Reference
	6.11.1 Detailed Description
	6.11.2 Constructor & Destructor Documentation

	6.12 GEOM_FADE2D::MeshGenParams Class Reference
	6.12.1 Detailed Description
	6.12.2 Member Function Documentation
	6.12.3 Member Data Documentation

	6.13 GEOM_FADE2D::MsgBase Class Reference
	6.13.1 Detailed Description
	6.13.2 Member Function Documentation

	6.14 GEOM_FADE2D::Point2 Class Reference
	6.14.1 Detailed Description
	6.14.2 Constructor & Destructor Documentation
	6.14.3 Member Function Documentation

	6.15 GEOM_FADE2D::Segment2 Class Reference
	6.15.1 Detailed Description
	6.15.2 Constructor & Destructor Documentation
	6.15.3 Member Function Documentation

	6.16 GEOM_FADE2D::SegmentChecker Class Reference
	6.16.1 Detailed Description
	6.16.2 Constructor & Destructor Documentation
	6.16.3 Member Function Documentation

	6.17 GEOM_FADE2D::Triangle2 Class Reference
	6.17.1 Detailed Description
	6.17.2 Constructor & Destructor Documentation
	6.17.3 Member Function Documentation

	6.18 GEOM_FADE2D::TriangleAroundVertexIterator Class Reference
	6.18.1 Detailed Description
	6.18.2 Constructor & Destructor Documentation
	6.18.3 Member Function Documentation

	6.19 GEOM_FADE2D::UserPredicateT Class Reference
	6.19.1 Detailed Description

	6.20 GEOM_FADE2D::Vector2 Class Reference
	6.20.1 Detailed Description
	6.20.2 Constructor & Destructor Documentation
	6.20.3 Member Function Documentation

	6.21 GEOM_FADE2D::Visualizer2 Class Reference
	6.21.1 Detailed Description
	6.21.2 Constructor & Destructor Documentation
	6.21.3 Member Function Documentation

	6.22 GEOM_FADE2D::Zone2 Class Reference
	6.22.1 Detailed Description
	6.22.2 Member Function Documentation
	6.22.3 Friends And Related Function Documentation

	7 File Documentation
	7.1 Bbox2.h File Reference
	7.2 Color.h File Reference
	7.3 ConstraintSegment2.h File Reference
	7.3.1 Enumeration Type Documentation

	7.4 SegmentChecker.h File Reference
	7.4.1 Enumeration Type Documentation

	7.5 TriangleAroundVertexIterator.h File Reference

	Index

